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Computational mechanics, an approach to structural complexity, defines a pro-
cess’s causal states and gives a procedure for finding them. We show that the
causal-state representation—an E-machine—is the minimal one consistent with
accurate prediction. We establish several results on E-machine optimality and
uniqueness and on how E-machines compare to alternative representations.
Further results relate measures of randomness and structural complexity
obtained from E-machines to those from ergodic and information theories.
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I. INTRODUCTION

Organized matter is ubiquitous in the natural world, but the branch of
physics which ought to handle it—statistical mechanics—lacks a coherent,
principled way of describing, quantifying, and detecting the many different
kinds of structure nature exhibits. Statistical mechanics has good measures
of disorder in thermodynamic entropy and in related quantities, such as the
free energies. When augmented with theories of critical phenomena (1) and
pattern formation, (2) it also has an extremely successful approach to
analyzing patterns formed through symmetry breaking, both in equi-
librium (3) and, more recently, outside it. (4) Unfortunately, these successes
involve many ad hoc procedures—such as guessing relevant order param-
eters, identifying small parameters for perturbation expansion, and choos-
ing appropriate function bases for spatial decomposition. It is far from



clear that the present methods can be extended to handle all the many
kinds of organization encountered in nature, especially those produced by
biological processes.

Computational mechanics (5) is an approach that lets us directly address
the issues of pattern, structure, and organization. While keeping concepts
and mathematical tools already familiar from statistical mechanics, it is
distinct from the latter and complementary to it. In essence, from either
empirical data or from a probabilistic description of behavior, it shows
how to infer a model of the hidden process that generated the observed
behavior. This representation—the E-machine—captures the patterns and
regularities in the observations in a way that reflects the causal structure of
the process. With this model in hand, one can extrapolate beyond the
original observations to predict future behavior. Moreover, in a well
defined sense that is the subject of the following, the E-machine is the
unique maximally efficient model of the observed data-generating process.
E-Machines themselves reveal, in a very direct way, how the process

stores information, and how that stored information is transformed by new
inputs and by the passage of time. This, and not using computers for simu-
lations and numerical calculations, is what makes computational mechanics
‘‘computational’’, in the sense of ‘‘computation theoretic’’.

The basic ideas of computational mechanics were introduced a decade
ago. (6) Since then they have been used to analyze dynamical systems, (7, 8)

cellular automata, (9) hidden Markov models, (10) evolved spatial computa-
tion, (11) stochastic resonance, (12) globally coupled maps, (13) the dripping
faucet experiment, (14) and atmospheric turbulence. (15) Despite this record of
successful application, there has been some uncertainty about the mathe-
matical foundations of the subject. In particular, while it seemed evident
from construction that an E-machine captured the patterns inherent in a
process and did so in a minimal way, no explicit proof of this was
published. Moreover, there was no proof that, if the E-machine was optimal
in this way, it was the unique optimal representation of a process. These
gaps have now been filled. Subject to some (reasonable) restrictions on the
statistical character of a process, we prove that the E-machine is indeed the
unique optimal causal model. The rigorous proof of these results is the
main burden of this paper. We gave preliminary versions of the optimality
results—but not the uniqueness theorem, which is new here—in ref. 16.

The outline of the exposition is as follows. We begin by showing how
computational mechanics relates to other approaches to pattern, random-
ness, and causality. The upshot of this is to focus our attention on patterns
within a statistical ensemble and their possible representations. Using ideas
from information theory, we state a quantitative version of Occam’s Razor
for such representations. At that point we define causal states, (6) equiv-

818 Shalizi and Crutchfield



alence classes of behaviors, and the structure of transitions between causal
states—the E-machine. We then show that the causal states are ideal from
the point of view of Occam’s Razor, being the simplest way of attaining the
maximum possible predictive power. Moreover, we show that the causal
states are uniquely optimal. This combination allows us to prove a number
of other, related optimality results about E-machines. We examine the
assumptions made in deriving these optimality results, and we note that
several of them can be lifted without unduly upsetting the theorems. We
also establish bounds on a process’s intrinsic computation as revealed by
E-machines and by quantities in information and ergodic theories. Finally,
we close by reviewing what has been shown and what seem like promising
directions for further work on the mathematical foundations of computa-
tional mechanics.

A series of appendices provide supplemental material on information
theory, equivalence relations and classes, E-machines for time-reversed
processes, technical issues of conditional measures, semi-group theory, and
connections and distinctions between computational mechanics and other
fields.

To set the stage for the mathematics to follow and to motivate the
assumptions used there, we begin now by reviewing prior work on pattern,
randomness, and causality. We urge the reader interested only in the
mathematical development to skip directly to Section IIF—a synopsis of
the central goals and assumptions of computational mechanics—and con-
tinue from there.

II. PATTERNS

To introduce our approach to—and even to argue that some approach
is necessary for—discovering and describing patterns in nature we begin by
quoting Jorge Luis Borges:

These ambiguities, redundancies, and deficiencies recall those attributed by
Dr. Franz Kuhn to a certain Chinese encyclopedia entitled Celestial Emporium of
Benevolent Knowledge. On those remote pages it is written that animals are divided
into (a) those that belong to the Emperor, (b) embalmed ones, (c) those that are
trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g) stray dogs, (h) those
that are included in this classification, (i) those that tremble as if they were mad, (j)
innumerable ones, (k) those drawn with a very fine camel’s hair brush, (l) others,
(m) those that have just broken a flower vase, (n) those that resemble flies from a
distance.

—J. L. Borges, ‘‘The Analytical Language of John Wilkins’’, in ref. 17, p. 103; see
also discussion in ref. 18.
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The passage illustrates the profound gulf between patterns, and classi-
fications derived from patterns, that are appropriate to the world and help
us to understand it and those patterns which, while perhaps just as legiti-
mate as logical entities, are not at all informative. What makes the Celestial
Emporium’s scheme inherently unsatisfactory, and not just strange, is that
it tells us nothing about animals. We want to find patterns in a process that
‘‘divide it at the joints, as nature directs, not breaking any limbs in half as a
bad carver might’’ (ref. 19, 265D).

Computational mechanics is not directly concerned with pattern for-
mation per se; (4) though we suspect it will ultimately be useful in that
domain. Nor is it concerned with pattern recognition as a practical matter
as found in, say, neuropsychology, (20) psychophysics and perception, (21)

cognitive ethology, (22) computer programming, (23) or signal and image pro-
cessing. (24, 25) Instead, it is concerned with the questions of what patterns are
and how patterns should be represented. One way to highlight the difference
is to call this pattern discovery, rather than pattern recognition.

The bulk of the intellectual discourse on what patterns are has been
philosophical. One distinct subset has been conducted under the broad
rubric of mathematical logic. Within this there are approaches, on the one
hand, that draw on (highly) abstract algebra and the theory of relations; on
the other, that approach patterns via the theory of algorithms and effective
procedures.

The general idea, in both approaches, is that some object O has a
pattern P—O has a pattern ‘‘represented’’, ‘‘described’’, ‘‘captured’’, and
so on by P—if and only if we can use P to predict or compress O. Note
that the ability to predict implies the ability to compress, but not vice versa;
here we stick to prediction. The algebraic and algorithmic strands differ
mainly on how P itself should be represented; that is, they differ in how it
is expressed in the vocabulary of some formal scheme.

We should emphasize here that ‘‘pattern’’ in this sense implies a kind
of regularity, structure, symmetry, organization, and so on. In contrast,
ordinary usage sometimes accepts, for example, speaking about the
‘‘pattern’’ of pixels in a particular slice of between-channels video ‘‘snow’’;
but we prefer to speak of that as the configuration of pixels.

A. Algebraic Patterns

Although the problem of pattern discovery appears early, in Plato’s
Meno (26) for example, perhaps the first attempt to make the notion of
‘‘pattern’’ mathematically rigorous was that of Whitehead and Russell in
Principia Mathematica. They viewed patterns as properties, not of sets, but
of relations within or between sets, and accordingly they work out an
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elaborate relation-arithmetic (ref. 27, vol. II, part IV); cf. ref. 28, ch. 5–6.
This starts by defining the relation-number of a relation between two sets as
the class of all the relations that are equivalent to it under one-to-one, onto
mappings of the two sets. In this framework relations share a common
pattern or structure if they have the same relation-number. For instance, all
square lattices have similar structure since their elements share the same
neighborhood relation; as do all hexagonal lattices. Hexagonal and square
lattices, however, exhibit different patterns since they have non-isomorphic
neighborhood relations—i.e., since they have different relation-numbers.
(See also recoding equivalence defined in ref. 29.) Less work has been done
on this than they—especially Russell (30)—had hoped.

A more recent attempt at developing an algebraic approach to
patterns builds on semi-group theory and its Krohn–Rhodes decomposi-
tion theorem. Ref. 31 discusses a range of applications of this approach to
patterns. Along these lines, Rhodes and Nehaniv have tried to apply semi-
group complexity theory to biological evolution. (32) They suggest that the
complexity of a biological structure can be measured by the number of
subgroups in the decomposition of an automaton that describes the
structure.

Yet another algebraic approach has been developed by Grenander and
co-workers, primarily for pattern recognition. (33) Essentially, this is a matter
of trying to invent a minimal set of generators and bonds for the pattern in
question. Generators can adjoin each other, in a suitable n-dimensional
space, only if their bonds are compatible. Each pair of compatible bonds
specifies at once a binary algebraic operation and an observable element
of the configuration built out of the generators. (Our construction in
Appendix D, linking an algebraic operation with concatenations of strings,
is analogous in a rough way, as are the ‘‘observable operator models’’ of
ref. 34.) Probabilities can be attached to these bonds, leading in a natural
way to a (Gibbsian) probability distribution over entire configurations.
Grenander and his colleagues have used these methods to characterize,
inter alia, several biological phenomena. (35, 36)

B. Turing Mechanics: Patterns and Effective Procedures

The other path to patterns follows the traditional exploration of the
logical foundations of mathematics, as articulated by Frege and Hilbert
and pioneered by Church, Gödel, Post, Russell, Turing, and Whitehead.
A more recent and relatively more popular approach goes back to
Kolmogorov and Chaitin, who were interested in the exact reproduction of
an individual object; (37–40) in particular, their focus was discrete symbol
systems, rather than (say) real numbers or other mathematical objects.
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The candidates for expressing the pattern P were universal Turing
machine (UTM) programs—specifically, the shortest UTM program that
can exactly produce the object O. This program’s length is called O’s
Kolmogorov–Chaitin complexity. Note that any scheme—automaton,
grammar, or what-not—that is Turing equivalent and for which a notion of
‘‘length’’ is well defined will do as a representational scheme. Since we can
convert from one such device to another—say, from a Post tag system (41) to
a Turing machine—with only a finite description of the first system, such
constants are easily assimilated when measuring complexity in this
approach.

In particular, consider the first n symbols On of O and the shortest
program Pn that produces them. We ask, What happens to the limit

lim
n Q.

|Pn |
n

, (1)

where |P| is the length in bits of program P? On the one hand, if there is
a fixed-length program P that generates arbitrarily many digits of O,
then this limit vanishes. Most of our interesting numbers, rational or irra-
tional—such as 7, p, e, `2—are of this sort. These numbers are eminently
compressible: the program P is the compressed description, and so it cap-
tures the pattern obeyed by the sequence describing O. If the limit goes
to 1, on the other hand, we have a completely incompressible descrip-
tion and conclude, following Kolmogorov, Chaitin, and others, that O is
random. (37–40, 42, 43) This conclusion is the desired one: the Kolmogorov–
Chaitin framework establishes, formally at least, the randomness of an
individual object without appeals to probabilistic descriptions or to
ensembles of reproducible events. And it does so by referring to a deter-
ministic, algorithmic representation—the UTM.

There are many well-known difficulties with applying Kolmogorov
complexity to natural processes. First, as a quantity, it is uncomputable in
general, owing to the halting problem. (40) Second, it is maximal for random
sequences; this can be construed either as desirable, as just noted, or as a
failure to capture structure, depending on one’s aims. Third, it only applies
to a single sequence; again this is either good or bad. Fourth, it makes no
allowance for noise or error, demanding exact reproduction. Finally,
limn Q. |Pn |/n can vanish, although the computational resources needed to
run the program, such as time and storage, grow without bound.

None of these impediments have kept researchers from attempting to
use Kolmogorov–Chaitin complexity for practical tasks—such as measur-
ing the complexity of natural objects (e.g., ref. 44), as a basis for theories of
inductive inference, (45, 46) and generally as a means of capturing patterns. (47)
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As Rissanen (ref. 48, p. 49) says, this is akin to ‘‘learn[ing] the properties
[of a data set] by writing programs in the hope of finding short ones!’’

Various of the difficulties just listed have been addressed by sub-
sequent work. Bennett’s logical depth accounts for time resources. (49) (In
fact, it is the time for the minimal-length program P to produce O.)
Koppel’s sophistication attempts to separate out the ‘‘regularity’’ portion of
the program from the random or instance-specific input data. (50, 51) Ultima-
tely, these extensions and generalizations remain in the UTM, exact-
reproduction setting and so inherit inherent uncomputability.

C. Patterns with Error

Motivated by these theoretical difficulties and practical concerns, an
obvious next step is to allow our pattern P some degree of approximation
or error, in exchange for shorter descriptions. As a result, we lose perfect
reproduction of the original configuration from the pattern. Given the
ubiquity of noise in nature, this is a small price to pay. We might also say
that sometimes we are willing to accept small deviations from a regularity,
without really caring what the precise deviation is. As pointed out in
ref. 18’s conclusion, this is certainly a prime motivation in thermodynamic
descriptions, in which we explicitly throw away, and have no interest in,
vast amounts of microscopic detail in order to find a workable description
of macroscopic observations.

Some interesting philosophical work on patterns-with-error has been
done by Dennett, with reference not just to questions about the nature of
patterns and their emergence but also to psychology. (52) The intuition is
that truly random processes can be modeled very simply—‘‘to model coin-
tossing, toss a coin.’’ Any prediction scheme that is more accurate than
assuming complete independence ipso facto captures a pattern in the data.
There is thus a spectrum of potential pattern-capturers ranging from the
assumption of pure noise to the exact reproduction of the data, if that is
possible. Dennett notes that there is generally a trade-off between the
simplicity of a predictor and its accuracy, and he plausibly describes
emergent phenomena (53, 54) as patterns that allow for a large reduction in
complexity for only a small reduction in accuracy. Of course, Dennett was
not the first to consider predictive schemes that tolerate error and noise; we
discuss some of the earlier work in App. 8. However, to our knowledge, he
was the first to have made such predictors a central part of an explicit
account of what patterns are. It must be noted that this account lacks the
mathematical detail of the other approaches we have considered so far, and
that it relies on the inexact prediction of a single configuration. In fact, it
relies on exact predictors that are ‘‘fuzzed up’’ by noise. The introduction
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of noise, however, brings in probabilities, and their natural setting is in
ensembles. It is in that setting that the ideas we share with Dennett can
receive a proper quantitative treatment.

D. Randomness: The Anti-Pattern?

We should at this point say a bit about the relations between random-
ness, complexity, and structure, at least as we use those words. Ignoring
some foundational issues, randomness is actually rather well understood
and well handled by classical tools introduced by Boltzmann; (55) Fisher,
Neyman, and Pearson; (56) Kolmogorov; (37) and Shannon, (57) among others.
One tradition in the study of complexity in fact identifies complexity with
randomness and, as we have just seen, this is useful for some purposes. As
these purposes are not those of analyzing patterns in processes and in real-
world data, however, they are not ours. Randomness simply does not cor-
respond to a notion of pattern or structure at all and, by implication,
neither Kolmogorov–Chaitin complexity nor any of its spawn measure
pattern.

Nonetheless, some approaches to complexity conflate ‘‘structure’’ with
the opposite of randomness, as conventionally understood and measured in
physics by thermodynamic entropy or a related quantity, such as Shannon
entropy. In effect, structure is defined as ‘‘one minus disorder’’. In contrast,
we see pattern—structure, organization, regularity, and so on—as describ-
ing a coordinate ‘‘orthogonal’’ to a process’s degree of randomness. That
is, complexity (in our sense) and randomness each capture a useful prop-
erty necessary to describe how a process manipulates information. This
complementarity is even codified by the complexity-entropy diagrams
introduced in ref. 6. When we use the word ‘‘complexity’’ we mean
‘‘degrees’’ of pattern, not degrees of randomness.

E. Causation

We want our representations of patterns in dynamical processes to be
causal—to say how one state of affairs leads to or produces another.
Although a key property, causality enters our development only in an
extremely weak sense, the weakest one can use mathematically, which is
Hume’s: (58) one class of event causes another if the latter always follows the
former; the effect invariably succeeds the cause. As good indeterminists, in
the following we replace this invariant-succession notion of causality with a
more probabilistic one, substituting a homogeneous distribution of succes-
sors for the solitary invariable successor. (A precise statement appears in
Section IVA’s definition of causal states.) This approach results in a purely
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phenomenological statement of causality, and so it is amenable to experi-
mentation in ways that stronger notions of causality—e.g., that of
ref. 59—are not. Ref. 60 independently reaches a concept of causality
essentially the same ours via philosophical arguments.

F. Synopsis of Pattern

Our survey leads us to look for an approach to patterns which is at
once

1. Algebraic, giving us an explicit breakdown or decomposition of the
pattern into its parts;

2. Computational, showing how the process stores and uses information;
3. Calculable, analytically or by systematic approximation;
4. Causal, telling us how instances of the pattern are actually

produced; and
5. Naturally stochastic, not merely tolerant of noise but explicitly

formulated in terms of ensembles.

Computational mechanics satisfies all these desiderata.

III. PATTERNS IN ENSEMBLES: PADDLING AROUND OCCAM’S

POOL

Here a pattern P is something knowledge of which lets us predict, at
better than chance rates, if possible, the future of sequences drawn from an
ensemble O: P has to be statistically accurate and confer some leverage or
advantage as well. Let’s fix some notation and state the assumptions that
will later let us prove the basic results.

A. Hidden Processes

We restrict ourselves to discrete-valued, discrete-time stationary
stochastic processes. (See Section VIIB for discussion of these assump-
tions.) Intuitively, such processes are sequences of random variables Si, the
values of which are drawn from a countable set A. We let i range over all
the integers, and so get a bi-infinite sequence

SY=...S− 1S0S1... . (2)
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In fact, we define a process in terms of the distribution of such sequences;
cf. refs. 61 and 62.

Definition 1 (A Process). Let A be a countable set. Let W=AZ be
the set of bi-infinite sequences composed from A, Ti: WWA be the mea-
surable function that returns the i th element si of a bi-infinite sequence
w ¥ W, and F the s-algebra of cylinder sets of W. Adding a probability
measure P gives us a probability space (W,F, P), with an associated
random variable SY. A process is a sequence of random variables
Si=Ti(SY), i ¥ Z.

Here, and throughout, we follow the convention of using capital
letters to denote random variables and lower-case letters their particular
values.

It follows from Definition 1 that there are well defined probability
distributions for sequences of every finite length. Let SF L

t be the sequence of
St, St+1, ..., St+L − 1 of L random variables beginning at St. SF

0
t — l, the null

sequence. Likewise, SR L
t denotes the sequence of L random variables going

up to St, but not including it; SR L
t =SF L

t − L. Both SF L
t and SR L

t take values from
sL ¥AL. Similarly, SF t and SR t are the semi-infinite sequences starting from
and stopping at t and taking values sF and sR, respectively.

Intuitively, we can imagine starting with distributions for finite-length
sequences and extending them gradually in both directions, until the infi-
nite sequence is reached as a limit. While this can be a useful picture to
have in mind, defining a process in this way raises some subtle measure-
theoretic issues, such as how distributions over finite-length sequences limit
on the infinite-length distribution. To evade these questions, we start with
the latter, and obtain the former by ‘‘marginalization’’. (Readers will find a
particularly clear exposition of this approach in ch. 1 of ref. 62.)

Definition 2 (Stationarity). A process Si is stationary if and only if

P(SF L
t =sL)=P(SF L

0=sL), (3)

for all t ¥ Z, L ¥ Z+, and all sL ¥AL.

In other words, a stationary process is one that is time-translation
invariant. Consequently, P(SF t=sF)=P(SF0=sF) and P(SR t=sR)=P(SR0=sR),
and so we drop the subscripts from now on.

We will call SR and SR L pasts or histories and SF and SF L, futures. We will
need to refer to the class of all measurable sets of histories; this will be
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m(SR ).3 Similarly, the class of all measurable sets of futures is m(SF ). It is

3 Conventionally, this ought to be s(SR ), but, as the reader will see, that notation would be
confusing later on.

readily checked (10) that m(SR )=1.

L=1 m(SR
L), and likewise for m(SF ).

B. The Pool

Our goal is to predict all or part of SF using some function of some part
of SR . We begin by taking the set S[ of all pasts and partitioning it into
mutually exclusive and jointly comprehensive subsets. That is, we make a
class r of subsets of pasts.4 (See Fig. 1 for a schematic example.) Each

4 At several points our constructions require referring to sets of sets. To help mark the dis-
tinction, we call the set of sets of histories a class.

r ¥r will be called a state or an effective state. When the current history SR
is included in the set r, we will speak of the process being in state r. Thus,
we define a function g from histories to effective states:

g: S[ Wr. (4)

A specific individual history SR ¥ S[ maps to a specific state r ¥r; the
random variable SR for the past maps to the random variable R for the
effective states. It makes little difference whether we think of g as being a
function from a history to a subset of histories or a function from a history
to the label of that subset. Each interpretation is convenient at different
times, and we will use both.

Note that we could use any function defined on S[ to partition that set,
by assigning to the same r all the histories SR on which the function takes
the same value. Similarly, any equivalence relation on S[ partitions it. (See
Appendix B for more on equivalence relations.) Due to the way we defined
a process’s distribution, each effective state has a well defined distribution
of futures, though not necessarily a unique one.5 Specifying the effective

5 This is not true if g is not at least nearly measurable (see Appendix E2b). To paraphrase
ref. 140, readers should assume that all our effective-state functions are sufficiently tame,
measure-theoretically, that whatever induced distributions we invoke will exist.

state thus amounts to making a prediction about the process’s future. All
the histories belonging to a given effective state are treated as equivalent for
purposes of predicting the future. (In this way, the framework formally
incorporates traditional methods of time-series analysis; see Appendix H1.)

We call the collection of all partitions r of the set of histories S[
Occam’s pool.
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Fig. 1. A schematic picture of a partition of the set S[ of all histories into some class of
effective states: r={Ri : i=1, 2, 3, 4}. Note that the Ri need not form compact sets; we
simply draw them that way for clarity. One should have in mind Cantor sets or other more
pathological structures.

C. A Little Information Theory

Since the bulk of the following development will be consumed with
notions and results from information theory, (57) we now review several
highlights briefly, for the benefit of readers unfamiliar with the theory and
to fix notation. Appendix 1 lists a number of useful information-theoretic
formulæ, which get called upon in our proofs. Throughout, our notation
and style of proof follow those in ref. 63.

1. Entropy Defined

Given a random variable X taking values in a countable set A, the
entropy of X is

H[X] — − C
x ¥A

P(X=x) log2 P(X=x), (5)

taking 0 log 0=0. Notice that H[X] is the expectation value of
− log2 P(X=x) and is measured in bits of information. Caveats of the
form ‘‘when the sum converges to a finite value’’ are implicit in all state-
ments about the entropies of infinite countable sets A.

Shannon interpreted H[X] as the uncertainty in X. (Those leery of
any subjective component in notions like ‘‘uncertainty’’ may read ‘‘effective
variability’’ in its place.) He showed, for example, that H[X] is the mean
number of yes-or-no questions needed to pick out the value of X on
repeated trials, if the questions are chosen to minimize this average. (57)

2. Joint and Conditional Entropies

We define the joint entropy H[X, Y] of two variables X (taking
values in A) and Y (taking values in B) in the obvious way,

H[X, Y] — − C
(x, y) ¥A×B

P(X=x, Y=y) log2 P(X=x, Y=y).
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We define the conditional entropy H[X |Y] of one random variable X
with respect to another Y from their joint entropy:

H[X |Y] —H[X, Y]−H[Y]. (7)

This also follows naturally from the definition of conditional probability,
since P(X=x |Y=y) — P(X=x, Y=y)/P(Y=y). H[X|Y] measures the
mean uncertainty remaining in X once we know Y.6

6 We can still define the conditional entropy when the conditioning variable is not discrete; in
particular, we can still define it when we sometimes need to condition on events of probabil-
ity zero. All the normal inequalities about conditional entropy we invoke in our proofs still
hold good. See Appendix E.

3. Mutual Information

The mutual information I[X; Y] between two variables is defined to
be

I[X; Y] —H[X]−H[X |Y]. (8)

This is the average reduction in uncertainty about X produced by fixing Y.
It is non-negative, like all entropies here, and symmetric in the two
variables.

D. Patterns in Ensembles

It will be convenient to have a way of talking about the uncertainty of
the future. Intuitively, this would just be H[SF], but in general that quantity
is infinite and awkward to manipulate. (The special case in which H[SF] is
finite is dealt with in Appendix G.) Normally, we evade this by considering
H[SF L], the uncertainty of the next L symbols, treated as a function of L.
On occasion, we will refer to the entropy per symbol or entropy rate: (57, 63)

h[SF] — lim
L Q.

1
L
H[SF L], (9)

and the conditional entropy rate,

h[SF |X] — lim
L Q.

1
L
H[SF L |X], (10)

where X is some random variable and the limits exist. For stationary
stochastic processes, the limits always exist (ref. 63, Theorem 4.2.1, p. 64).
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These entropy rates are also always bounded above by H[S]; which
is a special case of Eq. (A3). Moreover, if h[SF]=H[S], the process con-
sists of independent variables—independent, identically distributed (IID)
variables, in fact, since we are only concerned with stationary processes
here.

Definition 3 (Capturing a Pattern). r captures a pattern if and
only if there exists an L such that

H[SF L |R] < LH[S]. (11)

This says that r captures a pattern when it tells us something about
how the distinguishable parts of a process affect each other: r exhibits
their dependence. (We also speak of g, the function associated with pasts,
as capturing a pattern, since this is implied by r capturing a pattern.)
Supposing that these parts do not affect each other, then we have IID
random variables, which is as close to the intuitive notion of ‘‘patternless’’
as one is likely to state mathematically. Note that, because of the indepen-
dence bound on joint entropies (Eq. (A3)), if the inequality is satisfied for
some L, it is also satisfied for every L − > L. Thus, we can consider the dif-
ference H[S]−H[SF L |R]/L, for the smallest L for which it is nonzero, as
the strength of the pattern captured by r. We will now mark an upper
bound (Lemma 1) on the strength of patterns; later we will show how to
attain this upper bound (Theorem 1).

E. The Lessons of History

We are now in a position to prove a result about patterns in ensembles
that will be useful in connection with our later theorems about causal
states.

Lemma 1 (Old Country Lemma). For allr and for all L ¥ Z+,

H[SF L |R] \H[SF L | SR]. (12)

Proof. By construction (Eq. (4)), for all L,

H[SF L |R]=H[SF L |g(SR )]. (13)
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But

H[SF L |g(SR )] \H[SF L | SR], (14)

since the entropy conditioned on a variable is never more than the entropy
conditioned on a function of the variable (Eq. (A14)). QED.

Remark 1. That is, conditioning on the whole of the past reduces
the uncertainty in the future to as small a value as possible. Carrying
around the whole semi-infinite past is rather bulky and uncomfortable and
is a somewhat dismaying prospect. Put a bit differently: we want to forget
as much of the past as possible and so reduce its burden. It is the contrast
between this desire and the result of Eq. (12) that leads us to call this the
Old Country Lemma.

Remark 2. Lemma 1 establishes the promised upper bound on the
strength of patterns: viz., the strength of the pattern is at most H[S]−
H[SF L | SR]/Lpast, where Lpast is the least value of L such that H[SF L | SR] <
LH[S].

F. Minimality and Prediction

Let’s invoke Occam’s Razor: ‘‘It is vain to do with more what can be
done with less’’. (64) To use the razor, we need to fix what is to be ‘‘done’’
and what ‘‘more’’ and ‘‘less’’ mean. The job we want done is accurate pre-
diction; i.e., reducing the conditional entropies H[SF L |R] as far as possible,
the goal being to attain the bound set by Lemma 1. But we want to do this
as simply as possible, with as few resources as possible. On the road to
meeting these two constraints—minimal uncertainty and minimal
resources—we will need a measure of the second. Since there is a proba-
bility measure over pasts, there is an induced measure on the g-states.7

7 Again, this assumes g is at least nearly measurable. See App. E2b.

Accordingly, we define the following measure of resources.

Definition 4 (Complexity of State Classes). The statistical
complexity of a classr of states is

Cm(r) —H[R]

=− C
r ¥R

P(R=r) log2 P(R=r), (15)

when the sum converges to a finite value.
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The m in Cm reminds us that it is a measure-theoretic property and
depends ultimately on the distribution over the process’s sequences, which
induces a measure over states.

The statistical complexity of a state class is the average uncertainty (in
bits) in the process’s current state. This, in turn, is the same as the average
amount of memory (in bits) that the process appears to retain about the
past, given the chosen state class r. (We will later, in Definition 12, see
how to define the statistical complexity of a process itself.) The goal is to
do with as little of this memory as possible. Restated then, we want to
minimize statistical complexity, subject to the constraint of maximally
accurate prediction.

The idea behind calling the collection of all partitions of S[ Occam’s
pool should now be clear: One wants to find the shallowest point in the
pool. This we now do.

IV. COMPUTATIONAL MECHANICS

Those who are good at archery learnt from the bow and not from Yi the Archer.
Those who know how to manage boats learnt from the boats and not from Wo.

—Anonymous in ref. 65.

The ultimate goal of computational mechanics is to discern the
patterns intrinsic to a process. That is, as much as possible, the goal is to
let the process describe itself, on its own terms, without appealing to a
priori assumptions about the process’s structure. Here we simply explore
the consistency and well-definedness of these goals. In practice, we may be
constrained to merely approximate these ideals more or less grossly.
Naturally, such problems, which always turn up in implementation, are
much easier to address if we start from secure foundations.

Our definitions and constructions in this section rely on conditional
probabilities. This is unproblematic so long as we condition on events of
nonzero probability. However, we need to condition on events, such as
particular histories, whose probability is generally zero. There are well
established ways of handling this difficulty, but their attendant technicali-
ties tend to obscure the main lines of our argument. To keep those lines as
clear as possible, in this section we state our definitions as though classical
conditional probability was adequate, reserving the measure-theoretic
treatment of our main concepts for Appendix E, where we note the limita-
tions and caveats required by this stricter approach. Our proofs are con-
structed so as to be compatible with the proper use of conditional mea-
sures, but intelligible (if merely heuristic) without it.
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A. Causal States

Definition 5 (A Process’s Causal States) The causal states of a
process are the members of the range of the function E that maps from
histories to sets of histories:

E: S[ W 2S[

E(sR) — {sR − |P(SF ¥ F |SR=sR)=P(SF ¥ F |SR=sR −),

for all F ¥ m(SF ), SR − ¥ sR}, (16)

where 2S[ is the power set of S[ and m(SF ) is the collection of all measurable
future events. We write the i th causal state as Si and the set of all causal
states as s; the corresponding random variable is denoted S, and its
realization s.

The cardinality and topology of s are unspecified. s can be finite,
countably infinite, a continuum, a Cantor set, or something stranger still.
Examples of these are given in refs. 5 and 10; see especially the examples
for hidden Markov models given there.

Alternately and equivalently, we could define an equivalence relation
’E such that two histories are equivalent if and only if they have the same
conditional distribution of futures, and then define causal states as the
equivalence classes generated by ’E . (In fact, this was the original
approach. (6)) Either way, the divisions of this partition of S[ are made
between regions that leave us in different conditions of ignorance about the
future.

This last statement suggests another, still equivalent, description of E:

E(sR)={sR − |P(SF L=sFL | SR=sR)=P(SF L=sFL | SR=sR −),

sFL ¥ SF L, sR − ¥ SR , L ¥ Z+}. (17)

Using this we can make the original definition, Eq. (16), more intuitive by
picturing a sequence of partitions of the space S[ of all histories in which
each new partition, induced using L+1, is a refinement of the previous one
induced using L. At the coarsest level, the first partition (L=1) groups
together those histories that have the same distribution for the very next
observable. These classes are then subdivided using the distribution of the
next two observables, then the next three, four, and so on. The limit of this
sequence of partitions—the point at which every member of each class has

Computational Mechanics 833



the same distribution of futures, of whatever length, as every other member
of that class—is the partition of S[ induced by ’E . See Appendix B for a
detailed discussion and review of the equivalence relation ’E .

Although they will not be of direct concern in the following, due to the
time-asymptotic limits taken, there are transient causal states in addition to
those (recurrent) causal states defined above in Eq. (16). Roughly speaking,
the transient causal states describe how a lengthening sequence (a history)
of observations allows us to identify the recurrent causal states with
increasing precision. See the developments in Appendix B and in refs. 10
and 66 for more detail on transient causal states.

Causal states are a particular kind of effective state, and they have all
the properties common to effective states (Section IIIB). In particular, each
causal state Si has several structures attached:

1. The index i—the state’s ‘‘name’’.

2. The set of histories that have brought the process to Si, which we
denote {sR ¥ Si}.

3. A conditional distribution over futures, denoted P(SF |Si) and equal
to P(SF | sR), sR ¥ Si. Since we refer to this type of distribution frequently and
since it is the ‘‘shape of the future’’, we call it the state’s morph.

Ideally, each of these should be denoted by a different symbol, and there
should be distinct functions linking each of these structures to their causal
state. To keep the growth of notation under control, however, we shall be
tactically vague about these distinctions. Readers may variously picture E
as mapping histories to (i) simple indices, (ii) subsets of histories, (iii) dis-
tributions over futures, or (iv) ordered triples of indices, subsets, and
morphs; or one may even leave E uninterpreted, as preferred, without
interfering with the development that follows.

Fig. 2. A schematic representation of the partitioning of the set S[ of all histories into causal
states Si ¥ s. Within each causal state all the individual histories SR have the same morph—the
same conditional distribution P(SF | sR) for future observables.
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1. Morphs

Each causal state has a unique morph, i.e., no two causal states have
the same conditional distribution of futures. This follows directly from
Definition 5, and it is not true of effective states in general. Another
immediate consequence of that definition is that, for any measurable future
event F,

P(SF ¥ F |S=E(sR))=P(SF ¥ F |SR=sR). (18)

(Again, this is not generally true of effective states.) This observation lets us
prove a useful lemma about the conditional independence of the past SR and
the future SF .

Lemma 2. The past and the future are independent, conditioning
on the causal states.

Proof. By Proposition 4 of Appendix E, SR and SF are independent
given S if and only if, for any measurable set F of futures,
P(SF ¥ F |SR=sR, S=s)=P(SF ¥ F |S=s). Since S=E(SR ), it is automatically
true (Eq. (E5)) that P(SF ¥ F |SR=sR, S=E(sR))=P(SF ¥ F |SR=sR). But
then, P(SF ¥ F |SR=sR)=P(SF ¥ F |S=E(sR)), so P(SF ¥ F |SR=sR, S=s)=
P(SF ¥ F |S=s). QED.

2. Homogeneity

Following ref. 60, we introduce two new definitions and a lemma
which are required later on, especially in the proof of Lemma 7 and the
theorems depending on that lemma.

Definition 6 (Strict Homogeneity). A set X is strictly homo-
geneous with respect to a random variable Y when the conditional distri-
bution P(Y |X) for Y is the same for all measurable subsets of X.

Definition 7 (Weak Homogeneity). A set X is weakly homoge-
neous with respect to Y if X is not strictly homogeneous with respect to Y,
but X0X0 (X with X0 removed) is, where X0 is a subset of X of measure 0.

Lemma 3 (Strict Homogeneity of Causal States). A process’s
causal states are the largest subsets of histories that are all strictly homo-
geneous with respect to futures of all lengths.

Proof. We must show that, first, the causal states are strictly homo-
geneous with respect to futures of all lengths and, second, that no larger
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strictly homogeneous subsets of histories could be made. The first point,
the strict homogeneity of the causal states, is evident from Eq. (17): By
construction, all elements of a causal state have the same morph, so any
part of a causal state will have the same morph as the whole state. The
second point likewise follows from Eq. (17), since the causal state by con-
struction contains all the histories with a given morph. Any other set
strictly homogeneous with respect to futures must be smaller than a causal
state, and any set that includes a causal state as a proper subset cannot be
strictly homogeneous. QED.

Remark. The statistical explanation literature would say that causal
states are the ‘‘statistical-relevance basis for causal explanations’’. The
elements of such a basis are, precisely, the largest classes of combinations
of independent variables with homogeneous distributions for the dependent
variables. See ref. 60 for further discussion along these lines.

B. Causal State-to-State Transitions

The causal state at any given time and the next value of the observed
process together determine a new causal state; this is proved shortly in
Lemma 5. Thus, there is a natural relation of succession among the causal
states; recall the discussion of causality in Section IIE. Moreover, given the
current causal state, all the possible next values of the observed sequence
(SF 1) have well defined conditional probabilities. In fact, by construction the
entire semi-infinite future (SF) does. Thus, there is a well defined probability
T (s)

ij of the process generating the value s ¥A and going to causal state Sj, if
it is in state Si.

Definition 8 (Causal Transitions). The labeled transition probabil-
ity T (s)

ij is the probability of making the transition from state Si to state Sj

while emitting the symbol s ¥A:

T (s)
ij — P(S −=Sj, SF 1=s|S=Si), (19)

where S is the current causal state and S − its successor. We denote the set
{T (s)

ij : s ¥A} by T.

Lemma 4 (Transition Probabilities). T (s)
ij is given by

T (s)
ij =P(SRs ¥ Sj | SR ¥ Si), (20)
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where SRs is read as the semi-infinite sequence obtained by concatenating
s ¥A onto the end of SR .

Proof. We show that the events concerned are really the same. That
is, we want to show that

{S −=Sj, SF 1=s, S=Si}={SRs ¥ Sj, SR ¥ S}.

Now, that S=Si and SR ¥ Si are the same event is clear by construction. So,
too, for SR − ¥ Sj and S −=Sj. So we can certainly assert that

{S −=Sj, SF 1=s, S=Si}={SR − ¥ Sj, SF 1=s, SR ¥ Si}.

The conjunction of the first and third events implies that, for all sR, if SR=sR,
then SR −=sRa, for some symbol a ¥A. But the middle event ensures that
a=s. Hence,

{S −=Sj, SF 1=s, S=Si}={SRs ¥ Sj, SF 1=s, SR ¥ Si}.

But now the middle event is redundant and can be dropped. Thus,

{S −=Sj, SF 1=s, S=Si}={SRs ¥ Sj, SR ¥ Si},

as promised. Since the events have the same probability, when conditioned
on S, the events {SRs ¥ Sj} and {S −=Sj, SF 1=s} will yield the same condi-
tional probability.8 QED.

8 Technically, they will yield versions of the same conditional probability, i.e., they will agree
with probability 1. See Appendix E.

Notice that T (l)
ij =dij; that is, the transition labeled by the null symbol

l is the identity.

C. e-Machines

The combination of the function E from histories to causal states with
the labeled transition probabilities T (s)

ij is called the E-machine of the
process. (5, 6)

Definition 9 (An e-Machine Defined). The E-machine of a process
is the ordered pair {E, T}, where E is the causal state function and T is set
of the transition matrices for the states defined by E.
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Equivalently, we may denote an E-machine by {s, T}.
To satisfy the algebraic requirement outlined in Section IIF, we make

explicit the connection with semi-group theory.

Proposition 1 (e-Machines Are Monoids). The algebra generated
by the E-machine {E, T} is a semi-group with an identity element, i.e., it is a
monoid.

Proof. See Appendix D.

Remark. Due to this, E-machines can be interpreted as capturing a
process’s generalized symmetries. Any subgroups of an E-machine’s semi-
group are, in fact, symmetries in the usual sense.

Lemma 5 (e-Machines Are Deterministic). For each Si ¥ s and
each s ¥A, there is at most one Sj ¥ s such that, for every history sR ¥ Si,
the history sRs ¥ Sj. If such a Sj exists, then for all other Sk ¥ s, T (s)

ik =0. If
there is no such Sj, then T (s)

ik =0 for all Sk ¥ s whatsoever.

Proof. The first part of the lemma asserts that for all s ¥A and
sR, sR − ¥ S[ , if E(sR)=E(sR −), then E(sRs)=E(sR −s). (sRs is just another history and
belongs to one or another causal state.) We show that this follows directly
from causal equivalence.

Consider any pair of histories sR, sR − such that E(sR)=E(sR −), any single
symbol s, and a (measurable) set F of future events. Let sF denote the
set of futures obtained by prefixing the symbol s to each future in F.
(sF is also measurable.) By causal equivalence, P(SF ¥ sF | SR=sR)=
P(SF ¥ sF | SR=sR −). Now, SF ¥ sF can be decomposed into the intersection of
two events: SF 1=s and SF1 ¥ F, where SF1 is the random variable for the
future sequence, ignoring the next symbol. We therefore begin with the
following equalities.

P(SF ¥ sF | SR=sR)=P(SF ¥ sF | SR=sR −)

P(SF 1=s, SF1 ¥ F |SR=sR)=P(SF 1=s, SF1 ¥ F |SR=sR −)

For any three random variables X, Y, Z, the conditional probability
P(Z ¥ A, Y=y |X=x) can be factored as P(Z ¥ A |Y=y, X=x)×
P(Y=y |X=x) (Eq. E4).9

9 This assumes the regularity of the conditional probabilities, which is valid for our discrete
processes. Again, see Appendix E.

P(SF1 ¥ F |SF 1=s, SR=sR) P(SF 1=s|SR=sR)

=P(SF1 ¥ F |SF 1=s, SR=sR −) P(SF 1=s|SR=sR −)
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From causal equivalence, the second factors on each side of the equation
are equal, so we divide through for them. (We address the case where
P(SF 1=s|SR=sR)=P(SF 1=s|SR=sR −)=0 below.)

P(SF1 ¥ F |SF 1=s, SR=sR)=P(SF1 ¥ F |SF 1=s, SR=sR −)

P(SF ¥ F |SR=sRs)=P(SF ¥ F |SR=sR −s)

The last step is justified by stationarity. Since the set F of future events is
arbitrary, it follows that sRs ’E sR −s. Consequently, for each Si and each s,
there is at most one Sj such that T (s)

ij > 0.
As remarked, causal equivalence tells us that P(SF 1=s|SR=sR)=

P(SF 1=s|SR=sR −). But they could both be equal to zero, in which case we
can’t divide through for them. But then, again as promised, it follows that
every entry in the transition matrix T (s)

ij =0, when Si=E(sR). Thus, the
labeled transition probabilities have the promised form. QED.

Remark 1. In automata theory, (67, 68) a set of states and transitions is
said to be deterministic if the current state and the next input—here, the
next symbol from the original stochastic process—together fix the next
state. This use of the word ‘‘deterministic’’ is often confusing, since many
stochastic processes (e.g., simple Markov chains) are deterministic in this
sense.

Remark 2. Starting from a fixed state, a given symbol always leads
to at most one single state. But there can be several transitions from one
state to another, each labeled with a different symbol.

Remark 3. Clearly, if T (s)
ij > 0, then T (s)

ij =P(SF 1=s|S=Si). In
automata theory the ‘‘disallowed’’ transitions (T (s)

ij =0) are sometimes
explicitly represented and lead to a ‘‘reject’’ state indicating that the par-
ticular history does not occur.

Lemma 6 (e-Machines Are Markovian) Given the causal state at
time t−1, the causal state at time t is independent of the causal state at
earlier times.

Proof. We start by showing that, writing S, S −, S' for the sequence
of causal states at three successive times, S and S' are conditionally inde-
pendent, given S −.

Let M be a (measurable) set of causal states.

P(S' ¥ M |S −=s −, S=s)=P(SF 1 ¥ A |S −=s −, S=s),
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where A ıA is the set of all symbols that lead from s − to some s' ¥ M.
This is a well-defined and measurable set, in virtue of Lemma 5 immedia-
tely preceding, which also guarantees (see Remark 3 to the Lemma) the
equality of conditional probabilities we have used. Invoking Lemma 3,
conditioning on S has no further effect once we have conditioned on S −,

P(SF 1 ¥ A |S −=s −, S=s)=P(SF 1 ¥ A |S −=s −)

=P(S' ¥ M |S −=s −)

But (Proposition 4, Appendix E) and Eq. (E3)) this is true if and only if
conditional independence holds. Now the lemma follows by straight-
forward mathematical induction. QED.

Remark 1. This lemma strengthens the claim that the causal states
are, in fact, the causally efficacious states: given knowledge of the present
state, what has gone before makes no difference. (Again, recall the philo-
sophical preliminaries of Section IIE.)

Remark 2. This result indicates that the causal states, considered as
a process, define a kind of Markov process. Thus, causal states can be
roughly considered to be a generalization of Markovian states. We say
‘‘kind of’’ since the class of E-machines is substantially richer (5, 10) than what
one normally associates with Markov processes. (69, 70)

Definition 10 (e-Machine Reconstruction). E-Machine reconstruc-
tion is any procedure that given a process P(SY) (respectively an approxi-
mation of P(SY)), produces the process’s E-machine {s, T} (respectively an
approximation of {s, T}).

Given a mathematical description of a process, one can often calculate
analytically its E-machine. (For example, see the computational mechanics
analysis of spin systems in ref. 66.) There is also a wide range of algorithms
which reconstruct E-machines from empirical estimates of P(SY). Some, such
as those used in refs. 5–7 and 71, operate in ‘‘batch’’ mode, taking the raw
data as a whole and producing the E-machine. Others could operate
incrementally, in ‘‘on-line’’ mode, taking in individual measurements and
re-estimating the set of causal states and their transition probabilities.

V. OPTIMALITIES AND UNIQUENESS

We now show that: causal states are maximally accurate predictors of
minimal statistical complexity; they are unique in sharing both properties;
and their state-to-state transitions are minimally stochastic. In other words,
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Fig. 3. An alternative class r of states (delineated by dashed lines) that partition S[ overlaid
on the causal states s (outlined by solid lines). Here, for example, S2 contains parts of R1, R2,
R3 and R4. The collection of all such alternative partitions form Occam’s pool. Note again
that the Ri need not be compact nor simply connected, as drawn.

they satisfy both of the constraints borrowed from Occam, and they are the
only representations that do so. The overarching moral here is that causal
states and E-machines are the goals in any learning or modeling scheme.
The argument is made by the time-honored means of proving optimality
theorems. We address, in our concluding remarks (Section VII), the prac-
ticalities involved in attaining these goals.

As part of our strategy, though, we also prove several results that are
not optimality results; we call these lemmas to indicate their subordinate
status. All of our theorems, and some of our lemmas, will be established by
comparing causal states, generated by E, with other rival sets of states,
generated by other functions g. In short, none of the rival states—none of
the other patterns—can out-perform the causal states.

It is convenient to recall some notation before plunging in. Let S be
the random variable for the current causal state, SF 1 ¥A the next ‘‘observ-
able’’ we get from the original stochastic process, S − the next causal state,
R the current state according to g, and R − the next g-state. s will stand for
a particular value (causal state) of S and r a particular value of R. When
we quantify over alternatives to the causal states, we quantify overr.

Theorem 1 (Causal States Are Maximally Prescient)(16). For all
r and all L ¥ Z+,

H[SF L |R] \H[SF L |S]. (21)

Proof. We have already seen that H[SF L |R] \H[SF L | SR] (Lemma 1).
But by construction (Definition 5),

P(SF L=sFL | SR=sR)=P(SF L=sFL |S=E(sR)). (22)
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Since entropies depend only on the probability distribution, H[SF L |S]=
H[SF L | SR] for every L. Thus, H[SF L |R] \H[SF L |S], for all L. QED.

Remark. That is to say, causal states are as good at predicting the
future—are as prescient—as complete histories. In this, they satisfy the first
requirement borrowed from Occam. Since the causal states are well defined
and since they can be systematically approximated, we have shown that the
upper bound on the strength of patterns (Definition 3 and Lemma 1,
Remark) can in fact be reached. Intuitively, the causal states achieve this
because, unlike effective states in general, they do not throw away any
information about the future which might be contained in SR . Even more
colloquially, to paraphrase the definition of information in ref. 72, the
causal states record every difference (about the past) that makes a differ-
ence (to the future). We can actually make this intuition quite precise, in an
easy corollary to the theorem.

Corollary 1 (Causal States Are Sufficient Statistics). The causal
states s of a process are sufficient statistics for predicting it.

Proof. It follows from Theorem 1 and Eq. (8) that, for all L ¥ Z+,

I[SF L; S]=I[SF L; SR], (23)

where I was defined in Eq. (8). Consequently, the causal state is a sufficient
statistic—see refs. 63, p. 37 and 73, section 2.4–2.5—for predicting futures
of any length. QED.

All subsequent results concern rival states that are as prescient as the
causal states. We call these prescient rivals and denote a class of them R1 .

Definition 11 (Prescient Rivals). Prescient rivals R1 are states that
are as predictive as the causal states; viz., for all L ¥ Z+,

H[SF L |R1 ]=H[SF L |S]. (24)

Remark. Prescient rivals are also sufficient statistics.

Corollary 2 (A Sufficient Condition for Prescience). If
P(SF 1=a|R=g(sR))=P(SF 1=a|S=E(sR)) for all a ¥A, and R is determi-
nistic (in the sense of Lemma 5), then R is prescient. That is, deterministic
states which get the distribution of the next symbol right are prescient.

Proof. It will be enough to show that, for any L, P(SF L |R)=
P(SF L |S), since then the equality of conditional entropies is obvious. We do
this by induction; suppose that the equality of conditional probabilities
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holds for all lengths of futures up to some L, and consider futures of length
L+1.

P(SF L+1=sLa |R=g(sR))

=P(SFL+1=a|R=g(sR), SF L=sL) P(SF L=sL |R=g(sR))

=P(SFL+1=a|R=g(sR), SF L=sL) P(SF L=sL |S=E(sR)) (25)

where the second equality uses the inductive hypothesis. Since we
assume the R states are deterministic, the combination of the current
effective state (g(sR)) and the next L symbols (sL) fixes a unique future
effective state, namely g(sRsL). Thus, by Proposition 3, Appendix E, we see
that P(SFL+1=a|R=g(SR ), SF L=sL)=P(SF 1=a|R=g(sRsL)). Substituting
back in,

P(SF L+1=sLa |R=g(sR)) (26)

=P(SF 1=a|R=g(sRsL)) P(SF L=sL |S=E(sR)

=P(SF 1=a|S=E(sRsL)) P(SF L=sL |S=E(sR)

=P(SF L+1=sLa |S=E(sR)), (27)

so the induction is established. Since (by hypothesis) it holds for L=1, it
holds for all positive L. QED.

Remark. The causal states satisfy the hypotheses of this proposition.
Since, as we shall see (Theorem 2), the causal states are the minimal pre-
scient states, they are also the minimal deterministic states which get the
distribution of the next symbol right. This observation is useful in design-
ing E-machine reconstruction procedures. (74)

Lemma 7 (Refinement Lemma). For all prescient rivals R1 and
for each r̂ ¥R1 , there is a s ¥ s and a measure-0 subset r̂0 … r̂, possibly
empty, such that r̂0 r̂0 ı s, where 0 is set subtraction.

Proof. We invoke a straightforward extension of Theorem 2.7.3 of
ref. 63: If X1, X2, ..., Xn are random variables over the same set A, each
with distinct probability distributions, G a random variable over the
integers from 1 to n such that P(G=i)=li, and Z a random variable over
A such that Z=XG, then

H[Z]=H 5 C
n

i=1
liXi
6

\ C
n

i=1
liH[Xi]. (28)
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In words, the entropy of a mixture of distributions is at least the mean of
the entropies of those distributions. This follows since H is strictly concave,
which in turn follows from x log x being strictly convex for x \ 0. We
obtain equality in Eq. (28) if and only if all the li are either 0 or 1, i.e., if
and only if Z is at least weakly homogeneous (Definition 7).

The conditional distribution of futures for each rival state r can be
written as a weighted mixture of the morphs of one or more causal states.
(Cf. Fig. 3.) Thus, by Eq. (28), unless every r is at least weakly homoge-
neous with respect to SF L (for each L), the entropy of SF L conditioned on R
will be higher than the minimum, the entropy conditioned on S. So, in the
case of the maximally predictive R1 , every r̂ ¥R1 must be at least weakly
homogeneous with respect to all SF L. But the causal states are the largest
classes that are strictly homogeneous with respect to all SF L (Lemma 3).
Thus, the strictly homogeneous part of each r̂ ¥R1 must be a subclass,
possibly improper, of some causal state s ¥ s. QED.

Remark 1. An alternative proof appears in Appendix F.

Remark 2. The content of the lemma can be made quite intuitive, if
we ignore for a moment the measure-0 set r̂0 of histories mentioned in its
statement. It then asserts that any alternative partition R1 that is as pre-
scient as the causal states must be a refinement of the causal-state partition.
That is, each R1 i must be a (possibly improper) subset of some Sj. Other-
wise, at least one R1 i would have to contain parts of at least two causal
states. And so, using this R1 i to predict the future observables would lead to
more uncertainty about SF than using the causal states. This is illustrated by
Fig. 4, which should be contrasted with Fig. 3.

Adding the measure-0 set r̂0 of histories to this picture does not
change its heuristic content much. Precisely because these histories have
zero probability, treating them in an ‘‘inappropriate’’ way makes no dis-
cernible difference to predictions, morphs, and so on. There is a problem of
terminology, however, since there seems to be no standard name for the
relationship between the partitions R1 and s. We propose to say that the
former is a refinement of the latter almost everywhere or, simply, a refine-
ment a.e.

Remark 3. One cannot work the proof the other way around to
show that the causal states have to be a refinement of the equally prescient
R1 -states. This is precluded because applying the theorem borrowed from
ref. 63, Eq. (28), hinges on being able to reduce uncertainty by specifying
from which distribution one chooses. Since the causal states are constructed
so as to be strictly homogeneous with respect to futures, this is not the case.
Lemma 3 and Theorem 1 together protect us.
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Fig. 4. A prescient rival partition R1 must be a refinement of the causal-state partition
almost everywhere. That is, almost all of each R1 i must be contained within some Sj; the
exceptions, if any, are a set of histories of measure 0. Here for instance S2 contains the posi-
tive-measure parts of R1 3, R1 4, and R1 5. One of these rival states, say R1 3, could have member-
histories in any or all of the other causal states, provided the total measure of such exceptional
histories is zero. Cf. Fig. 3.

Remark 4. Because almost all of each prescient rival state is wholly
contained within a single causal state, we can construct a function
g:R1 W s, such that, if g(sR)=r̂, then E(SR )=g(r̂) almost always. We can
even say that S=g(R1 ) almost always, with the understanding that this
means that, for each r̂, P(S=g(r̂) |R1=r̂)=1.

Theorem 2 (Causal States Are Minimal)(6, 16). For all prescient
rivals R1 ,

Cm(r1 ) \ Cm(S). (29)

Proof. By Lemma 7, Remark 4, there is a function g such that
S=g(R1 ) almost always. But H[f(X)] [H[X] (Eq. (A11)) and so

H[S]=H[g(R1 )] [H[R1 ]. (30)

but Cm(r1 )=H[R1 ] (Definition 4). QED.

Remark 1. We have just established that no rival pattern, which is
as good at predicting the observations as the causal states, is any simpler,
in the sense given by Definition 4, than the causal states. (This is the
theorem of ref. 6.) Occam therefore tells us that there is no reason not to
use the causal states. The next theorem shows that causal states are
uniquely optimal and so that Occam’s Razor all but forces us to use them.

Remark 2. Here it becomes important that we are trying to predict
the whole of SF and not just some piece, SF L. Suppose two histories sR and sR −
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have the same conditional distribution for futures of lengths up to L, but
differing ones after that. They would then belong to different causal states.
An g-state that merged those two causal states, however, would have just
as much ability to predict SF L as the causal states. More, these R-states
would be simpler, in the sense that the uncertainty in the current state
would be lower. We conclude that causal states are optimal, but for the
hardest job—that of predicting futures of all lengths.

Remark 3. We have already seen (Theorem 1, Remark 2) that
causal states are sufficient statistics for predicting futures of all lengths; so
are all prescient rivals. A minimal sufficient statistic is one that is a function
of all other sufficient statistics (ref. 63, p. 38). Since, in the course of the
proof of Theorem 2, we have shown that there is a function g from any R1
to S, we have also shown that causal states are minimal sufficient statistics.

We may now, as promised, define the statistical complexity of a
process. (5, 6)

Definition 12 (Statistical Complexity of a Process). The statis-
tical complexity ‘‘Cm(O)’’ of a process O is that of its causal states:
Cm(O) — Cm(s).

Due to the minimality of causal states we see that the statistical
complexity measures the average amount of historical memory stored in
the process. Without the minimality theorem, this interpretation would not
be possible, since we could trivially elaborate internal states, while still
generating the same observed process. Cm for those states would grow
without bound and so be arbitrary and not a characteristic property of the
process. (18)

Theorem 3 (Causal States Are Unique). For all prescient rivals
R1 , if Cm(R1 )=Cm(s), then there exists an invertible function between R1
and s that almost always preserves equivalence of state: R1 and g are the
same as s and E, respectively, except on a set of histories of measure 0.

Proof. From Lemma 7, we know that S=g(R1 ) almost always. We
now show that there is a function f such that R1=f(S) almost always,
implying that g=f − 1 and that f is the desired relation between the two
sets of states. To do this, by Eq. (A12) it is sufficient to show that
H[R1 |S]=0. Now, it follows from an information-theoretic identity
(Eq. (A8)) that

H[S]−H[S |R1 ]=H[R1 ]−H[R1 |S]. (31)
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Since, by Lemma 7 H[S |R1 ]=0, both sides of Eq. (31) are equal to H[S].
But, by hypothesis, H[R1 ]=H[S]. Thus, H[R1 |S]=0 and so there exists
an f such that R1=f(S) almost always. We have then that f(g(R1 ))=R1
and g(f(S))=S, so g=f − 1. This implies that f preserves equivalence of
states almost always: for almost all sR, sR − ¥ S[ , g(sR)=g(sR −) if and only if
E(sR)=E(sR −). QED.

Remark. As in the case of the Refinement Lemma 7, on which the
theorem is based, the measure-0 caveats seem unavoidable. A rival that is
as predictive and as simple (in the sense of Definition 4) as the causal
states, can assign a measure-0 set of histories to different states than the
E-machine does, but no more. This makes sense. Such a measure-0 set
makes no difference, since its members are never observed, by definition.
By the same token, however, nothing prevents a minimal, prescient rival
from disagreeing with the E-machine on those histories.

Theorem 4 (e-Machines Are Minimally Stochastic)(16). For all
prescient rivals R1 ,

H[R1 − |R1 ] \H[S − |S], (32)

where S − and R1 − are the next causal state of the process and the next
g-state, respectively.

Proof. From Lemma 5, S − is fixed by S and SF 1 together, thus
H[S − |S, SF 1]=0 by Eq. (A12). Therefore, from the chain rule for entropies
Eq. (A6),

H[SF 1 |S]=H[S −, SF 1 |S]. (33)

We have no result like the Determinism Lemma 5 for the rival states R1 ,
but entropies are always non-negative: H[R1 − |R1 , SF 1] \ 0. Since for all L,
H[SF L |R1 ]=H[SF L |S] by the definition, Definition 11, of prescient rivals,
H[SF 1 |R1 ]=H[SF 1 |S]. Now we apply the chain rule again,

H[R1 −, SF 1 |R1 ]=H[SF 1 |R1 ]+H[R1 − | SF 1,R1 ] (34)

\H[SF 1 |R1 ] (35)

=H[SF 1 |S] (36)

=H[S −, SF 1 |S] (37)

=H[S − |S]+H[SF 1 |S −, S]. (38)

In going from Eq. (36) to Eq. (37) we have used Eq. (33), and in the last
step we have used the chain rule once more.
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Using the chain rule one last time, we have

H[R1 −, SF 1 |R1 ]=H[R1 − |R1 ]+H[SF 1 |R1 −,R1 ]. (39)

Putting these expansions, Eqs. (38) and (39), together we get

H[R1 − |R1 ]+H[SF 1 |R1 −,R1 ] \H[S − |S]+H[SF 1 |S −, S] (40)

H[R1 − |R1 ]−H[S − |S] \H[SF 1 |S −, S]−H[SF 1 |R1 −,R1 ].

From Lemma 7, we know that S=g(R1 ), so there is another function g −

from ordered pairs of g-states to ordered pairs of causal states:
(S −, S)=g −(R1 −,R1 ). Therefore, Eq. (A14) implies

H[SF 1 |S −, S] \H[SF 1 |R1 −,R1 ]. (41)

And so, we have that

H[SF 1 |S −, S]−H[SF 1 |R1 −,R1 ] \ 0

H[R1 − |R1 ]−H[S − |S] \ 0

H[R1 − |R1 ] \H[S − |S]. (42)

QED.

Remark. What this theorem says is that there is no more uncertainty
in transitions between causal states, than there is in the transitions between
any other kind of prescient effective states. In other words, the causal states
approach as closely to perfect determinism—in the usual physical, non-
computation-theoretic sense—as any rival that is as good at predicting the
future.

VI. BOUNDS

In this section we develop bounds between measures of structural
complexity and entropy derived from E-machines and those from ergodic
and information theories, which are perhaps more familiar.

Definition 13 (Excess Entropy). The excess entropy E of a process
is the mutual information between its semi-infinite past and its semi-infinite
future:

E — I[SF ; SR]. (43)
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The excess entropy is a frequently-used measure of the complexity of
stochastic processes and appears under a variety of names; e.g., ‘‘predictive
information’’, ‘‘stored information’’, ‘‘effective measure complexity’’, and
so on. (75–81) E measures the amount of apparent information stored in the
observed behavior about the past. As we now establish, E is not, in general,
the amount of memory that the process stores internally about its past; a
quantity measured by Cm.

Theorem 5 (The Bounds of Excess). The statistical complexity
Cm bounds the excess entropy E:

E [ Cm, (44)

with equality if and only if H[S | SF]=0.

Proof. E=I[SF ; SR]=H[SF]−H[SF | SR] and, by the construction of
causal states, H[SF | SR]=H[SF |S], so

E=H[SF]−H[SF |S]=I[SF ; S]. (45)

Thus, since the mutual information between two variables is never larger
than the self-information of either one of them (Eq. (A9)), E [H[S]=Cm,
with equality if and only if H[S | SF]=0. QED.

Remark 1. Note that we have invoked H[SF], not H[SF L], but only
while subtracting off quantities like H[SF | SR]. We need not worry, there-
fore, about the existence of a finite LQ. limit for H[SF L], just that of a
finite LQ. limit for I[SF L; SR] and I[SF L; S]. There are many elementary
cases (e.g., the fair-coin process) where the latter limits exist, while the
former do not. (See ref. 62 for details on how to construct such a mutual
information with full rigor.)

Remark 2. At first glance, it is tempting to see E as the amount of
information stored in a process. As Theorem 5 shows, this temptation
should be resisted. E is only a lower bound on the true amount of infor-
mation the process stores about its history, namely Cm. We can, however,
say that E measures the apparent information in the process, since it is
defined directly in terms of observed sequences and not in terms of hidden,
intrinsic states, as Cm is.

Remark 3. Perhaps another way to describe what E measures is to
note that, by its implicit assumption of block-Markovian structure, it takes
sequence-blocks as states. But even for the class of block-Markovian
sources, for which such an assumption is appropriate, excess entropy and
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statistical complexity measure different kinds of information storage.
Refs. 66 and 82 showed that in the case of one-dimensional range-R spin
systems, or any other block-Markovian source where block configurations
are isomorphic to causal states:

Cm=E+Rhm, (46)

for finite R. Only for zero-entropy-rate block-Markovian sources will the
excess entropy, a quantity estimated directly from sequence blocks, equal
the statistical complexity, the amount of memory stored in the process.
Examples of such sources include periodic processes, for which we have
Cm=E=log2 p, where p is the period.

Corollary 3. For all prescient rivals R1 ,

E [H[R1 ]. (47)

Proof. This follows directly from Theorem 29, since H[R1 ] \ Cm.
QED.

Lemma 8 (Conditioning Does Not Affect Entropy Rate). For
all prescient rivals R1 ,

h[SF]=h[SF |R1 ], (48)

where the entropy rate h[SF] and the conditional entropy rate h[SF |R1 ] were
defined in Eq. (9) and Eq. (10), respectively.

Proof. From Theorem 5 (Eq. (44)) and its Corollary 3 (Eq. (47)), we
have

lim
L Q.

(H[SF L]−H[SF L |R1 ]) [ lim
L Q.

H[R1 ], (49)

or,

lim
L Q.

H[SF L]−H[SF L |R1 ]
L

[ lim
L Q.

H[R1 ]
L

. (50)

Since, by Eq. (A4), H[SF L]−H[SF L |R1 ] \ 0, we have

h[SF]−h[SF |R1 ]=0. (51)

QED.
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Remark. Forcing the process into a certain state R1=r̂ is akin to
applying a controller, once. But in the infinite-entropy case, H[SF L]Q L Q..,
with which we are concerned, the future could contain (or consist of) an
infinite sequence of disturbances. In the face of this ‘‘grand disturbance’’,
the effects of the finite control are simply washed out.

Another way of viewing this is to reflect on the fact that h[SF] accounts
for the effects of all the dependencies between all the parts of the entire
semi-infinite future. This, owing to the time-translation invariance of sta-
tionarity, is equivalent to taking account of all the dependencies in the
entire process, including those between past and future. But these are what
is captured by h[SF |R1 ]. It is not that conditioning on R fails to reduce our
uncertainty about the future; it does so, for all finite times, and condition-
ing on S achieves the maximum possible reduction in uncertainty. Rather,
the lemma asserts that such conditioning cannot affect the asymptotic rate
at which such uncertainty grows with time.

Theorem 6 (Control Theorem). Given a class R1 of prescient
rivals,

H[S]−h[SF |R1 ] [ Cm, (52)

where H[S] is the entropy of a single symbol from the observable stochas-
tic process.

Proof. As is well known (ref. 63, Theorem 4.2.1, p. 64), for any sta-
tionary stochastic process,

lim
L Q.

H[SF L]
L

= lim
L Q.

H[SL | SF L − 1]. (53)

Moreover, the limits always exist. Up to this point, we have defined h[SF]
in the manner of the left-hand side; recall Eq. (9). It will be convenient in
the following to use that of the right-hand side.

From the definition of conditional entropy, we have

H[SR L]=H[SR 1 | SR L − 1]+H[SR L − 1]

=H[SR L − 1 | SR 1]+H[SR 1]. (54)

So we can express the entropy of the last observable the process generated
before the present as

H[SR 1]=H[SR L]−H[SR L − 1 | SR 1] (55)

=H[SR 1 | SR L − 1]+H[SR L − 1]−H[SR L − 1 | SR 1] (56)

=H[SR 1 | SR L − 1]+I[SR L − 1; SR 1]. (57)
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We go from Eq. (55) to Eq. (56) by substituting the first RHS of Eq. (54)
for H[SR L].

Taking the LQ. limit has no effect on the LHS,

H[SR 1]= lim
L Q.

(H[SR 1 | SR L − 1]+I[SR L − 1; SR 1]). (58)

Since the process is stationary, we can move the first term in the limit
forward to H[SL | SF L − 1]. This limit is h[SF], by Eq. (53). Furthermore,
because of stationarity, H[SR 1]=H[SF 1]=H[S]. Shifting the entropy rate
h[SF] to the LHS of Eq. (58) and appealing to time-translation once again,
we have

H[S]−h[SF]= lim
L Q.

I[SR L − 1; SR 1] (59)

=I[SR ; SF 1] (60)

=H[SF 1]−H[SF 1 | SR] (61)

=H[SF 1]−H[SF 1 |S] (62)

=I[SF 1; S] (63)

[H[S]=Cm, (64)

where the last inequality comes from Eq. (A9). QED.

Remark 1. The Control Theorem is inspired by, and is a version of,
Ashby’s law of requisite variety (ref. 83, ch. 11). This states that applying a
controller can reduce the uncertainty in the controlled variable by at most
the entropy of the control variable. (This result has recently been redis-
covered in ref. 84.) Thinking of the controlling variable as the causal state,
we have here a limitation on the controller’s ability to reduce the entropy
rate.

Remark 2. This is the only result so far where the difference
between the finite-L and the infinite-L cases is important. For the
analogous result in the finite case, see Appendix G, Theorem 7.

Remark 3. By applying Theorem 29 and Lemma 48, we could go
from the theorem as it stands to H[S]−h[SF |R1 ] [H[R1 ]. This has a
pleasing appearance of symmetry to it, but is actually a weaker limit on the
strength of the pattern or, equivalently, on the amount of control that
fixing the causal state (or one of its rivals) can exert.
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VII. CONCLUDING REMARKS

A. Discussion

Let’s review, informally, what we have shown. We began with ques-
tions about the nature of patterns and about pattern discovery. Our exa-
mination of these issues lead us to want a way of describing patterns that
was at once algebraic, computational, intrinsically probabilistic, and
causal. We then defined patterns in ensembles, in a very general and ab-
stract sense, as equivalence classes of histories, or sets of hidden states, used
for prediction. We defined the strength of such patterns (by their forecast-
ing ability or prescience) and their statistical complexity (by the entropy of
the states or the amount of information retained by the process about its
history). We showed that there was a limit on how strong such patterns
could get for each particular process, given by the predictive ability of the
entire past. In this way, we narrowed our goal to finding a predictor of
maximum strength and minimum complexity.

Optimal prediction led us to the equivalence relation ’E and the
function E and so to representing patterns by causal states and their transi-
tions—the E-machine. Our first theorem showed that the causal states are
maximally prescient; our second, that they are the simplest way of repre-
senting the pattern of maximum strength; our third theorem, that they are
unique in having this double optimality. Further results showed that
E-machines are the least stochastic way of capturing maximum-strength
patterns and emphasized the need to employ the efficacious but hidden
states of the process, rather than just its gross observables, such as
sequence blocks.

Why are E-machine states causal? First, E-machine architecture (say, as
given by its semi-group algebra) delineates the dependency between the
morphs P(SF | SR ), considered as events in which each new symbol determines
the succeeding morph. Thus, if state B follows state A then A is a cause of
B and B is an effect of A. Second, E-machine minimality guarantees that
there are no other events that intervene to render A and B independent. (18)

The E-machine is thus a causal representation of all the patterns in the
process. It is maximally predictive and minimally complex. It is at once
computational, since it shows how the process stores information (in the
causal states) and transforms that information (in the state-to-state transi-
tions), and algebraic (for details on which see Appendix D). It can be
analytically calculated from given distributions and systematically
approached from empirical data. It satisfies the basic constraints laid out in
Section IIF.

These comments suggest that computational mechanics and E-
machines are related or may be of interest to a number of fields. Time
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series analysis, decision theory, machine learning, and universal coding
theory explicitly or implicitly require models of observed processes. The
theories of stochastic processes, formal languages and computation, and of
measures of physical complexity are all concerned with representations of
processes—concerns which also arise in the design of novel forms of com-
puting devices. Very often the motivations of these fields are far removed
from computational mechanics. But it is useful, if only by way of contrast,
to touch briefly on these areas and highlight one or several connections
with computational mechanics, and we do so in Appendix H.

B. Limitations of the Current Results

Let’s catalogue the restrictive assumptions we made at the beginning
and that were used by our development.

1. We know exact joint probabilities over sequence blocks of all
lengths for a process.

2. The observed process takes on discrete values.
3. The process is discrete in time.
4. The process is a pure time series; e.g., without spatial extent.
5. The observed process is stationary.
6. Prediction can only be based on the process’s past, not on any

outside source of information.

The question arises, Can any be relaxed without much trouble?
One way to lift the first limitation is to develop a statistical error

theory for E-machine inference that indicates, say, how much data is
required to attain a given level of confidence in an E-machine with a given
number of causal states. This program is underway and, given its initial
progress, we describe several issues in more detail in the next section.

The second limitation probably can be addressed, but with a corre-
sponding increase in mathematical sophistication. The information-theore-
tic quantities we have used are also defined for continuous random
variables. It is likely that many of the results carry over to the continuous
setting.

The third limitation also looks similarly solvable, since continuous-
time stochastic process theory is well developed. This may involve sophis-
ticated probability theory or functional analysis.

As for the fourth limitation, there already exist tricks to make spatially
extended systems look like time series. Essentially, one looks at all the
paths through space-time, treating each one as if it were a time series.
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While this works well for data compression, (85) it is not yet clear whether it
will be entirely satisfactory for capturing structure. (86) More work needs to
be done on this subject.

It is unclear at this time how to relax the assumption of stationarity.
One can formally extend most of the results in this paper to nonstationary
processes without much trouble. It is, however, unclear how much sub-
stantive content these extensions have and, in any case, a systematic classi-
fication of nonstationary processes is (at best) in its infant stages.

Finally, one might say that the last restriction is a positive feature
when it comes to thinking about patterns and the intrinsic structure of a
process. ‘‘Pattern’’ is a vague word, of course, but even in ordinary usage it
is only supposed to involve things inside the process, not the rest of the
universe. Given two copies of a document, the contents of one copy can be
predicted with an enviable degree of accuracy by looking at the other copy.
This tells us that they share a common structure, but says absolutely
nothing about what that pattern is, since it is just as true of well-written
and tightly-argued scientific papers (which presumably are highly
organized) as it is of monkey-at-keyboard pieces of gibberish (which defi-
nitely are not).

C. Conclusions and Directions for Future Work

Computational mechanics aims to understand the nature of patterns
and pattern discovery. We hope that the foregoing development has con-
vinced the reader that we are neither being rash when we say that we have
laid a foundation for those projects, nor that we are being flippant when
we say that patterns are what are represented by E-machines, and that we
discover them by E-machine reconstruction. We would like to close by
marking out two broad avenues for future work.

First, consider the mathematics of E-machines themselves. We have
just mentioned possible extensions in the form of lifting assumptions made
in this development, but there are many other ways to go. It would be
helpful to have a good understanding of the measurement-resolution
scaling properties of E-machines for continuous-state processes and of
their relation to such ideas in automata theory as the Krohn–Rhodes
decomposition. (31) Anyone who manages to absorb Volume II of ref. 27
would probably be in a position to answer interesting questions about the
structures that processes preserve, perhaps even to give a purely relation-
theoretic account of E-machines. We have alluded in a number of places to
the trade-off between prescience and complexity. For a given process there
is presumably a sequence of optimal machines connecting the one-state,
zero-complexity machine with minimal prescience to the E-machine. Each
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member of the path is the maximally prescient machine for a certain level
of complexity; it would be very interesting to know what, if anything, we
can say in general about the shape of this ‘‘prediction frontier’’.

Second, there is E-machine reconstruction, an activity about which we
have said next to nothing. As we mentioned above (p. 24), there are already
several algorithms for reconstructing machines from data, even ‘‘on-line’’
ones. It is fairly evident that these algorithms will find the true machine in
the limit of infinite time and infinite data. What is needed is an under-
standing of the error statistics (87) of different reconstruction procedures, of
the kinds of mistakes these procedures make and the probabilities with
which they make them. Ideally, we want to find ‘‘confidence regions’’ for
the products of reconstruction. The aim is to calculate (i) the probabilities
of different degrees of reconstruction error for a given volume of data, (ii)
the amount of data needed to be confident of a fixed bound on the error,
or (iii) the rates at which different reconstruction procedures converge on
the E-machine. So far, an analytical theory has been developed that predicts
the average number of estimated causal states as a function of the amount
of data used when reconstructing certain kinds of processes. (88) Once we
possess a more complete theory of statistical inference for E-machines,
analogous perhaps to what already exists in computational learning theory,
we will be in a position to begin analyzing, sensibly and rigorously, the
multitude of intriguing patterns and information-processing structures the
natural world presents.

APPENDIX A: INFORMATION-THEORETIC FORMULÆ

The following formulæ prove useful in the development. They are
relatively intuitive, given our interpretation, and they can all be proved
with little more than straight algebra; see ref. 63, ch. 2. Below, f is a
nonrandom function.

H[X, Y]=H[X]+H[Y |X] (A1)

H[X, Y] \H[X] (A2)

H[X, Y] [H[X]+H[Y] (A3)

H[X |Y] [H[X] (A4)

H[X |Y]=H[X] iff X is independent of Y (A5)

H[X, Y |Z]=H[X |Z]+H[Y |X, Z] (A6)

H[X, Y |Z] \H[X |Z] (A7)
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H[X]−H[X |Y]=H[Y]−H[Y |X] (A8)

I[X; Y] [H[X] (A9)

I[X; Y]=H[X] iff H[X |Y]=0 (A10)

H[f(X)] [H[X] (A11)

H[X |Y]=0 iff X=f(Y) (A12)

H[f(X) |Y] [H[X |Y] (A13)

H[X |f(Y)] \H[X |Y] (A14)

Eqs. (A1) and (A6) are called the chain rules for entropies. Strictly speak-
ing, the right hand side of Eq. (A12) should read ‘‘for each y,
P(X=x |Y=y) > 0 for exactly one x’’.

APPENDIX B: THE EQUIVALENCE RELATION THAT INDUCES

CAUSAL STATES

Any relation that is reflexive, symmetric, and transitive is an equiv-
alence relation.

Consider the set S[ of all past sequences, of any length:

S[={sRL=sL − 1 · · · s− 1 : si ¥A, L ¥ Z+}. (B1)

Recall that sR 0=l, the empty string. We define the relation ’E over S[ by

sRK
i ’E sR

L
j Z P(SF | sRK

i )=P(SF | sRL
j ), (B2)

for all semi-infinite SF=s0s1s2 · · · , where K, L ¥ Z+. Here we show that ’E
is an equivalence relation by reviewing the basic properties of relations,
equivalence classes, and partitions. (The proof details are straightforward
and are not included. See ref. 89.) We will drop the length variables K and
L and denote by sR, sR −, sR' ¥ S[ members of any length in the set S[ of Eq. (B1).

First, ’E is a relation on S[ since we can represent it as a subset of the
Cartesian product

S[×S[={(sR, sR −) : sR, sR − ¥ S[}. (B3)

Second, the relation ’E is an equivalence relation on S[ since it is

1. reflexive: sR’E sR, for all sR ¥ S[ ;
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2. symmetric: sR’E sR −S sR − ’E sR; and
3. transitive: sR’E sR − and sR − ’E sR'S sR’E sR'.

Third, if sR ¥ S[ , the equivalence class of sR is

[sR]={sR − ¥ S[ : sR − ’E sR}. (B4)

The set of all equivalence classes in S[ is denoted S[/ ’E and is called the
factor set of S[ with respect to ’E . In Section IVA we called the individual
equivalence classes causal states Si and denoted the set of causal states
s={Si : i=0, 1, ..., k−1}. That is, s=S[/ ’E . (We noted in the main
development that the cardinality k=|s| of causal states may or may not be
finite.)

Finally, we list several basic properties of the causal-state equivalence
classes.

1. 1sR ¥ S[ [sR]=S[ .
2. 1k − 1

i=0 Si=S[ .
3. [sR]=[sR −]Z sR’E sR −.
4. If sR, sR − ¥ S[ , either

(a) [sR] 5 [sR −]=” or
(b) [sR]=[sR −].

5. The causal states s are a partition of S[ . That is,

(a) Si ]” for each i,
(b) 1k − 1

i=0 Si=S[ , and
(c) Si 5 Sj=” for all i ] j.

We denote the start state with S0. The start state is the causal state
associated with sR=l. That is, S0=[l].

APPENDIX C: TIME REVERSAL

The definitions and properties of the causal states obtained by scan-
ning sequences in the opposite direction, i.e., the causal states S]/ ’E, follow
similarly to those derived just above in Appendix B. In general,
S[/ ’E ] S]/ ’E. That is, past causal states are not necessarily the same as
future causal states; past and future morphs can differ; unlike entropy
rate, (16) past and future statistical complexities need not be equal:
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CRm ] CFm; (18) and so on. The presence or lack of this type of time-reversal
symmetry, as reflected in these inequalities, is a fundamental property of a
process.

APPENDIX D: e-MACHINES ARE MONOIDS

A semi-group is a set of elements closed under an associative binary
operator, but without a guarantee that every, or indeed any, element has an
inverse. (90) A monoid is a semi-group with an identity element. Thus, semi-
groups and monoids are generalizations of groups. Just as the algebraic
structure of a group is generally interpreted as a symmetry, we propose to
interpret the algebraic structure of a semi-group as a generalized symmetry.
The distinction between monoids and other semi-groups becomes impor-
tant here: only semi-groups with an identity element—i.e., monoids—can
contain subsets that are groups and so represent conventional symmetries.

We claim that the transformations that concatenate strings of symbols
from A onto other such strings form a semi-group G, the generators of
which are the transformations that concatenate the elements of A. The
identity element is to be provided by concatenating the null symbol l. The
concatenation of string t onto the string s is forbidden if and only if strings
of the form st have probability zero in a process. All such concatenations
are to be realized by a single semi-group element denoted ”. Since if
P(st)=0, then P(stu)=P(ust)=0 for any string u, we require that
”g=g”=” for all g ¥ G. Can we provide a representation of this semi-
group?

Recall that, from our definition of the labeled transition probabilities,
T (l)

ij =dij. Thus, T (l) is an identity element. This suggests using the labeled
transition matrices to form a matrix representation of the semi-group.
Accordingly, first define U (s)

ij by setting U (s)
ij =0 when T (s)

ij =0 and U (s)
ij =1

otherwise, to remove probabilities. Then define the set of matrices
U={T(l)} 2 {U(s) , s ¥A}. Finally, define G as the set of all matrices gener-
ated from the set U by recursive multiplication. That is, an element g of G
is

g (ab...cd)=U (d)U (c)...U (b)U (a), (D1)

where a, b, ...c, d ¥A. Clearly, G constitutes a semi-group under matrix
multiplication. Moreover, g (a...bc)=0 (the all-zero matrix) if and only if,
having emitted the symbols a...b in order, we must arrive in a state from
which it is impossible to emit the symbol c. That is, the zero-matrix 0 is
generated if and only if the concatenation of c onto a...b is forbidden. The
element” is thus the all-zero matrix 0, which clearly satisfies the necessary
constraints. This completes the proof of Proposition 1.
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We call the matrix representation—Eq. (D1) taken over all words in
Ak—of G the semi-group machine of the E-machine {s, T}. See ref. 91.

APPENDIX E: MEASURE-THEORETIC TREATMENT OF CAUSAL

STATES

In Section IV, where we define causal states, E-machines, and their
basic properties, we use a great many conditional probabilities. However,
there are times when the events on which we condition—particular his-
tories, or particular effective states—have probability zero. Then classical
formulæ for conditional probability do not apply, and a more careful and
technical treatment, going back to the measure-theoretic basis of probabil-
ity, is called for. We provide such a treatment in this appendix, showing
that the concepts we introduced in Section IV—the causal states, their
morphs, and so forth—are well defined measure-theoretically. Our proofs
in that section are equally valid whether we interpret the conditional prob-
abilities they invoke classically or measure-theoretically. (The measure-
theoretic interpretation raises a few technicalities, which we have flagged
with footnotes to those proofs.) And we show here that our methods of
proof in subsequent sections are not affected by this change in interpreta-
tion.

In what follows, we draw on refs. 61, 62, 92–95. Our notation broadly
follows that of ref. 92. A slightly different approach to these issues, and
more than slightly different terminology and notation, may be found in
chapter 2 of ref. 10.

1. Abstract Definition of Conditional Probability

Definition 14 (Conditional Probability). Consider a probability
space (W,F, P) and a s-subalgebra G …F. The conditional probability of
an event A ¥F, given the family of events G, is a real-valued random func-
tion PA ||G(w), with the following properties:

1. PA ||G(w) is measurable with respect to G; and
2. for any G ¥ G,

F
G
PA ||G(w) dP=P(A 5 G) (E1)

The latter condition generalizes the classical formula that P(A 5 G)=
;g ¥ G P(A | g) P(g).
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Proposition 2. There always exists a function PA ||G(w) satisfying the
just-given conditions. Moreover, if f and g are two functions which both
satisfy the above requirements, f(w)=g(w) for P-almost-all w.

Proof. The existence of such random variables is vouchsafed to us by
the Radon–Nikodym theorem; PA ||G(w) is the Radon–Nikodym derivative
of P(A 5 G), which is a measure over G, with respect to P. (The latter is
also restricted to the s-subalgebra G.) The Radon–Nikodym theorem also
tells us that any two functions which satisfy the two conditions above agree
for P-almost-all points w. Any such function is called a version of the con-
ditional probability. (See any of refs. 61, 92–95 for further details.)

If G=m(X), the s-algebra generated by the random variable X, then
we may write PA || X=x(w) or PA || X(w) in place of PA ||G(w).

It is not always the case that, if we let A vary, while holding w fixed,
we get a proper probability measure. Indeed, there are pathological
examples where there are no conditional probability measures, though
there are conditional probability functions. A conditional probability
function which is a measure for all w is said to be regular. If a regular
conditional probability uses as its conditioning s-algebra that generated by
a random variable X, we write P( · |X=x), as usual.

a. Conditional Expectation

As well as conditional probabilities, we shall need conditional expec-
tations. Their definition is completely analogous to Definition 14. The
expectation of the random variable X conditional on the s-subalgebra G,
denoted E{X ||G} is an integrable, G-measurable random variable such that
>G E{X ||G} dP=>G XdP for all G ¥ G. Conditional probabilities are,
of course, the conditional expectations of indicator functions. There is
another important relationship between conditional probability and condi-
tional expectation, which we give in the form of another proposition.

Proposition 3 (Coarsening Conditional Probability)(92–95). Con-
sider any two s-subalgebras G and H, with G …H. Then

PF ||G(w)=E{PF ||H ||G}(w) almost surely (a.s.), (E2)

where we have been explicit about the conditional expectation’s depen-
dence on w.

b. Conditional Independence

Let G be the conditioning s-subalgebra, and let A and B be two other
s-subalgebras. Then A and B are conditionally independent, given
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G, just when, for any pair of events A, B, A ¥A and B ¥ B, PAB ||G(w)=
PA ||G(w) PB ||G(w) a.s.

Take any two s-algebras over the same set, A and B; their product,
AB, is the s-algebra generated by the sets of the form a 5 b, where a ¥A

and b ¥ B.

Proposition 4 (Ref. 95, Section 2.5). A and B are conditionally
independent given G iff, for all B ¥ B, PB ||AG(w)=PB ||G(w) a.e., where AG
is defined as above. This is also true if A and B are interchanged.

Remark. Assuming regularity of conditional probability, this is
equivalent to saying that the random variables Y and Z are independent
given X if and only if

P(Z ¥ A |X=x, Y=y)=P(Z ¥ A |X=x) (E3)

Proposition 5 (ref. 94, p. 351). Assuming regularity of conditional
probability, for any three random variables

P(Z ¥ A, Y=y |X=x)

=P(Z ¥ A |Y=y, X=x) P(Y=y |X=x) (E4)

Let A=m(X), and B=m(f(X)), for a measurable, nonrandom func-
tion f. Then AB=m(X, f(X))=A=m(X). Therefore,

PA || X, f(X)(w)=PA || X(w) a.e., (E5)

since the conditioning s-algebras are the same.

2. Restatements and Proofs of the Main Results

We begin by restating the definition of causal equivalence, and so of
causal states, in terms adapted to abstract conditional probabilities. We
then go through the results of Section IV in order and, where necessary,
give alternate proofs of them. (Where new proofs are not needed, we say
so.)

a. Definition of Causal States

For us, W is the space of two-sided infinite strings over A; F is the
s-algebra generated by cylinders over such strings; and the probability
measure P is simply P (Definition 1).
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What we want to do is condition on histories; so we make our condi-
tioning s-subalgebra m(SR ), following the usual convention that m(X) is the
s-algebra induced by the random variable X. This contains all finite-length
histories, and even all semi-infinite histories, as events. Similarly, designate
the s-subalgebra for futures by m(SF ). We want there to be a function
PF ||m(SR )(w), at least when F ¥ m(SF ); and we want this to be a probability
measure over m(SF ), for fixed w.

As we have seen (Proposition 2), the conditional probability function
exists. Moreover, it is regular, since m(SR ) is a subalgebra of the s-algebra of
cylinder sets, and St always takes its values from a fixed, finite set. (93, 95)

Thus, we do have a random variable PF || SR=sR(w), which is the probabil-
ity of the set F ¥ m(SF ), given that SR=sR. We now define causal equivalence
thus: sR’E sR − iff, for P-almost all pairs w, w −, if w ¥ sR and w − ¥ sR −, then
PF || SR=sR(w)=PF || SR=sR−(w −), for all F ¥ m(SF ). (It is clear that this is an equiv-
alence relation—in particular, that it is transitive.)

It may be comforting to point out (following ref. 10, Section 2.5) that
the functions PF ||m(SRL)(w), i.e., the probabilities of the fixed future event F
conditional on longer and longer histories, almost always converge on
PF ||m(SR )(w). This is because of the martingale convergence theorem of Doob
(ref. 93, Theorem VII.4.3). For each L, m(SR L) … m(SR L+1) and the smallest s-
algebra containing them all is m(SR ). Thus, for any random variable X with
E{|X|} <., limL Q. E{X ||m(SR L)}=E{X ||m(SR )} almost surely. Applied to
the indicator function 1F of the future event F, this gives the desired con-
vergence.

Note that if we want only causal equivalence for a finite future,
matters are even simpler. Since for finite L every event in m(SF L) consists of
the union of a finite number of disjoint elementary events (i.e., of a finite
number of length-L futures), it suffices if the conditional probability
assignments agree for the individual futures. If they agree for every finite L,
then we have the alternate definition (Eq. 17) of causal states.

b. Measurability of E

At several points, we need E to be a measurable function, i.e., we need
m(S) ı m(SR ). This is certainly the case for processes that can be represented
as Markov chains, stochastic deterministic finite automata, or conventional
hidden Markov models generally. The strongest general result yet obtained
is that E is, so to speak, nearly measurable.

Proposition 6 (Ref. 10, Prop. 2.5.3). For each causal state Si, the
set E − 1(Si) of histories mapping to Si is either measurable or the intersec-
tion of a measurable set and a set of full measure.
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Thus, each E − 1(Si) differs from a measurable set in m(SR ) by at most a
subset of a set of measure zero. This is close enough to complete measur-
ability for our purposes, and we will speak of E as though it were always
measurable. Finding necessary and sufficient conditions on the process for
E to be measurable is an interesting problem.

c. The Morph

We wish to show that the morph of a causal state is well defined, i.e.,
that the distribution of futures conditional on the entire history is the same
as the distribution conditional on the causal state. Start with the fact that,
since S=E(SR ), and E is nearly measurable, m(S) ı m(SR ). This lets us use
Proposition E2, and see that PF ||S=Si

(w) is the expectation of PF || SR=sR(w)
over those w ¥ Si. But, by the construction of causal states, PF || SR=sR(w) has
the same value for P-almost-all w. Thus P(F |S=Si)=P(F | SR=sR) for
(almost every) sR ¥ Si. (We can always find versions of the conditional pro-
babilities which eliminate the ‘‘almost-all’’ and the ‘‘almost every’’ above.)
So, since this works for arbitrary future events F, it works in general, and
we may say that the distribution of futures is the same whether we condi-
tion on the past or on the causal state.

d. Existence of the Conditional Entropy of Futures

As we have seen, PSFL || SR (w) is a probability measure over a finite set, so
(ref. 62, Section 5.5), we define the entropy of length-L futures conditional
on a particular history sR as

H[SF L | SR=sR]

— − C
{sL}

P(SF L=sL | SR=sR) log2 P(SF L=sL | SR=sR), (E6)

with the understanding that we omit futures of conditional probability
zero from the sum. This is measurable, since P(SF L=sL | SR=sR) is m(SR )-
measurable for each sL. Now set

H[SF L | SR] — F H[SF L | SR=sR] dPSR , (E7)

where PSR is the restriction of P to m(SR ). (Measurability tells us that the
integral exists.)

The procedure for H[SF L |R] is similar, but if anything even less
problematic.

Note that we do not need to re-do the derivations of Sections V and
VI, since those simply exploit standard inequalities of information theory,
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which certainly apply to the conditional entropies we have just defined.
(Cf. refs. 61 and 62.)

c. The Labeled Transition Probabilities

Recall that we defined the labeled transition probability T (s)
ij as the

probability of the joint event S −=Sj and SF 1=s, conditional on S=Si.
Clearly (Proposition 2), the existence of such conditional probabilities is
not at issue, nor, as we have seen, is their regularity. We can thus leave
Definition 8 alone.

APPENDIX F: ALTERNATE PROOF OF THE REFINEMENT LEMMA

The proof of Lemma 7 carries through verbally, but we do not wish to
leave loop-holes. Unfortunately, this means introducing two new bits of
mathematics.

First of all, we need the largest classes that are strictly homogeneous
(Definition 6) with respect to SF L for fixed L; these are, so to speak, trunca-
tions of the causal states. Accordingly, we will talk about SL and sL, which
are analogous to S and s. We will also need to define the function
fL
sr — P(SL=sL |R=r).

Putting these together, for every L we have

H[SF L |R=r]=H 5 C
{sL}

fL
srP(SF

L |SL=sL)6 (F1)

\ C
{sL}

fL
srH[SF L |SL=sL]. (F2)

Thus,

H[SF L |R]=C
{r}

P(R=r) H[SF L |R=r] (F3)

\ C
{r}

P(R=r) C
{sL}

fL
srH[SF L |SL=sL] (F4)

= C
{sL, r}

P(R=r) fL
srH[SF L |SL=sL] (F5)

= C
{sL, r}

P(SL=sL,R=r) H[SF L |SL=sL] (F6)

=C
{sL}

P(SL=sL) H[SF |SL=sL] (F7)

=H[SF L |SL]. (F8)
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That is to say,

H[SF L |R] \H[SF L|SL], (F9)

with equality if and only if every fL
sr is either 0 or 1. Thus, if

H[SF L |R1 ]=H[SF |SL], every r̂ is entirely contained within some sL; except
for possible subsets of measure 0. But if this is true for every L—which, in
the case of a prescient rival R1 , it is—then every r̂ is at least weakly homo-
geneous (Definition 7) with respect to all SF L. Thus, by Lemma 3, all its
members, except for that same subset of measure 0, belong to the same
causal state. QED.

APPENDIX G: FINITE ENTROPY FOR THE SEMI-INFINITE FUTURE

While cases where H[SF] is finite—more exactly, where limL Q. H[SF L]
exists and is finite—may be uninteresting for information-theorists, they
are of great interest to physicists, since they correspond, among other
things, to periodic and limit-cycle behaviors. There are, however, only two
substantial differences between what is true of the infinite-entropy pro-
cesses considered in the main body of the development and the finite-
entropy case.

First, we can simply replace statements of the form ‘‘for all L, H[SF L]
... ’’ with H[SF]. For example, the optimal prediction theorem (Theorem 1)
for finite-entropy processes becomes for all r, H[SF |R] \H[SF |S]. The
details of the proofs are, however, entirely analogous.

Second, we can prove a substantially stronger version of the Control
Theorem (Theorem 6).

Theorem 7 (The Finite-Control Theorem). For all prescient
rivals R1 ,

H[SF]−H[SF |R1 ] [ Cm. (G1)

Proof. By a direct application of Eq. (A9) and the definition of
mutual information Eq. (8), we have that

H[SF]−H[SF |S] [H[S]. (G2)

But, by the definition of prescient rivals (Definition 24), H[SF |S]=
H[SF |R1 ], and, by definition, Cm=H[S]. Substituting equals for equals
gives us the theorem. QED.
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APPENDIX H: RELATIONS TO OTHER FIELDS

1. Time Series Modeling

The goal of time series modeling is to predict the future of a mea-
surement series on the basis of its past. Broadly speaking, this can be
divided into two parts: identify equivalent pasts and then produce a pre-
diction for each class of equivalent pasts. That is, we first pick a function
g: S[ Wr and then pick another function p:rW S] . Of course, we can
choose for the range of p futures of some finite length (length 1 is popular)
or even choose distributions over these. While practical applications often
demand a single definite prediction—‘‘You will meet a tall dark stranger’’,
there are obvious advantages to predicting a distribution—‘‘You have a .95
chance of meeting a tall dark stranger and a .05 chance of meeting a tall
familiar albino.’’ Clearly, the best choice for p is the actual conditional
distribution of futures for each r ¥r. Given this, the question becomes
what the best r is; i.e., What is the best g? At least in the case of trying to
understand the whole of the underlying process, we have shown that the
best g is, unambiguously, E. Thus, our discussion has implicitly subsumed
that of traditional time series modeling.

Computational mechanics—in its focus on letting the process speak
for itself through (possibly impoverished) measurements—follows the spirit
that motivated one approach to experimentally testing dynamical systems
theory. Specifically, it follows in spirit the methods of reconstructing
‘‘geometry from a time series’’ introduced by refs. 96 and 97. A closer
parallel is found, however, in later work on estimating minimal equations
of motion from data series. (98)

2. Decision-Theoretic Problems

The classic focus of decision theory is ‘‘rules of inductive beha-
vior’’. (99–101) The problem is to chose functions from observed data to
courses of action that possess desirable properties. This task has obvious
affinities to considering the properties of E and its rivals g. We can go
further and say that what we have done is consider a decision problem, in
which the available actions consist of predictions about the future of the
process. The calculation of the optimum rule of behavior in general faces
formidable technicalities, such as providing an estimate of the utility of
every different course of action under every different hypothesis about the
relevant aspects of the world. On the one hand, it is not hard to concoct
time-series tasks where the optimal rule of behavior does not use E at all.
On the other hand, if we simply aim to predict the process indefinitely far
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into the future, then because the causal states are minimal sufficient statis-
tics for the distribution of futures (Theorem 2 (Eq. (29), Remark 4), the
optimal rule of behavior will use E. (100)

3. Stochastic Processes

Clearly, the computational mechanics approach to patterns and
pattern discovery involves stochastic processes in an intimate and inextric-
able way. Probabilists have, of course, long been interested in using infor-
mation-theoretic tools to analyze stochastic processes, particularly their
ergodic behavior. (61, 62, 102, 103) There has also been considerable work in the
hidden-Markov-model and optimal-prediction literatures on inferring
models of processes from data or from given distributions. (10, 34, 104–106) To
the best of our knowledge, however, these two approaches have not been
previously combined.

Perhaps the closest approach to the spirit of computational mechanics
in the stochastic process literature is, surprisingly, the now-classical theory
of optimal prediction and filtering for stationary processes, developed by
Wiener and Kolmogorov. (107–111) The two theories share the use of informa-
tion-theoretic notions, the unification of prediction and structure, and the
conviction that ‘‘the statistical mechanics of time series’’ is a ‘‘field in which
conditions are very remote from those of the statistical mechanics of heat
engines and which is thus very well suited to serve as a model of what
happens in the living organism’’ (ref. 111, p. 59). So far as we have been
able to learn, however, no one has ever used this theory to explicitly iden-
tify causal states and causal structure, leaving these implicit in the mathe-
matical form of the prediction and filtering operators. Moreover, the
Wiener-Kolmogorov framework forces us to sharply separate the linear
and nonlinear aspects of prediction and filtering, because it has a great deal
of trouble calculating nonlinear operators. (109, 110) Computational mechanics
is completely indifferent to this issue, since it packs all of the process’s
structure into the E-machine, which is equally calculable in linear or
strongly nonlinear situations.

4. Formal Language Theory and Grammatical Inference

A formal language is a set of symbol strings (‘‘words’’ or ‘‘allowed
words’’) drawn from a finite alphabet. Every formal language may be
described either by a set of rules (a ‘‘grammar’’) for creating all and only
the allowed words, by an abstract automaton which also generates the
allowed words, or by an automaton which accepts the allowed words and
rejects all ‘‘forbidden’’ words. Our E-machines, stripped of probabilities,
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correspond to such automata—generative in the simple case or classifica-
tory, if we add a reject state and move to it when none of the allowed
symbols are encountered.

Since Chomsky, (112, 113) it has been known that formal languages can be
classified into a hierarchy, the higher levels of which have strictly greater
expressive power. The hierarchy is defined by restricting the form of the
grammatical rules or, equivalently, by limiting the amount and kind of
memory available to the automata. The lowest level of the hierarchy is that
of regular languages, which may be familiar to Unix-using readers via
regular expressions. These correspond to finite-state machines, for which
relatives of our minimality and uniqueness theorems are well known, (67) and
the construction of causal states is analogous to ‘‘Nerode equivalence
classing’’. (67, 114) Our theorems, however, are not restricted to this low-
memory, nonstochastic setting; for instance, they apply to hidden Markov
models with both finite and infinite numbers of hidden states. (10)

The problem of learning a language from observational data has been
extensively studied by linguists and by computer scientists interested in
natural-language processing. Unfortunately, well developed learning tech-
niques exist only for the two lowest classes in the Chomsky hierarchy, the
regular and the context-free languages. (For a good account of these pro-
cedures see ref. 115.) Adapting and extending this work to the reconstruc-
tion of E-machines should form a useful area of future research, a point to
which we alluded in the concluding remarks.

5. Computational and Statistical Learning Theory

The goal of computational learning theory (116, 117) is to identify
algorithms that quickly, reliably, and simply lead to good representations
of a target ‘‘concept’’. The latter is typically defined to be a binary dicho-
tomy of a certain feature or input space. Particular attention is paid to
results about ‘‘probably approximately correct’’ (PAC) procedures: (118)

those having a high probability of finding members of a fixed ‘‘representa-
tion class’’ (e.g., neural nets, Boolean functions in disjunctive normal form,
or deterministic finite automata). The key word here is ‘‘fixed’’; as in con-
temporary time-series analysis, practitioners of this discipline acknowledge
the importance of getting the representation class right. (Getting it wrong
can make easy problems intractable.) In practice, however, they simply
take the representation class as a given, even assuming that we can always
count on it having at least one representation which exactly captures the
target concept. Although this is in line with implicit assumptions in most of
mathematical statistics, it seems dubious when analyzing learning in the
real world. (5, 119, 120)
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In any case, the preceding development made no such assumption.
One of the goals of computational mechanics is, exactly, discovering the
best representation. This is not to say that the results of computational
learning theory are not remarkably useful and elegant, nor that one should
not take every possible advantage of them in implementing E-machine
reconstruction. In our view, though, these theories belong more to statisti-
cal inference, particularly to algorithmic parameter estimation, than to
foundational questions about the nature of pattern and the dynamics of
learning.

Finally, in a sense computational mechanics’ focus on causal states is a
search for a particular kind of structural decomposition for a process. That
decomposition is most directly reflected in the conditional independence of
past and future that causal states induce. This decomposition reminds one
of the important role that conditional independence plays in contemporary
methods for artificial intelligence, both for developing systems that reason
in fluctuating environments (121) and the more recently developed algorith-
mic methods of graphical models. (122, 123)

6. Description-Length Principles and Universal Coding Theory

Rissanen’s minimum description length (MDL) principle, most fully
described in ref. 48, is a procedure for selecting the most concise generative
model out of a family of models that are all statistically consistent with
given data. The MDL approach starts from Shannon’s results on the con-
nection between probability distributions and codes. Rissanen’s develop-
ment follows the inductive framework introduced by Solomonoff. (45)

Suppose we choose a representation that leads to a class M of models
and are given data set X. The MDL principle enjoins us to pick the model
M ¥M that minimizes the sum of the length of the description of X given
M, plus the length of description of M given M. The description length of
X is taken to be − log P(X |M); cf. Eq. (5). The description length of M
may be regarded as either given by some coding scheme or, equivalently, by
some distribution over the members of M. (Despite the similarities to
model estimation in a Bayesian framework, (124) Rissanen does not interpret
this distribution as a Bayesian prior or regard description length as a
measure of evidential support.)

The construction of causal states is somewhat similar to the states
estimated in Rissanen’s context algorithm (48, 125, 126) (and to the ‘‘voca-
bularies’’ built by universal coding schemes, such as the popular Lempel–
Ziv algorithm (127, 128)). Despite the similarities, there are significant differ-
ences. For a random source—for which there is a single causal state—the
context algorithm estimates a number of states that diverges (at least
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logarithmically) with the length of the data stream, rather than inferring a
single state, as E-machine reconstruction would. Moreover, we avoid any
reference to encodings of rival models or to prior distributions over them;
Cm(r) is not a description length.

7. Measure Complexity

Ref. 77 proposed that the appropriate measure of the complexity of a
process was the ‘‘minimal average Shannon information needed’’ for
optimal prediction. This true measure complexity was to be taken as the
Shannon entropy of the states used by some optimal predictor. The same
paper suggested that it could be approximated (from below) by the excess
entropy; there called the effective measure complexity, as noted in Sec-
tion VI above. This is a position closely allied to that of computational
mechanics, to Rissanen’s MDL principle, and to the minimal embeddings
introduced by the ‘‘geometry of a time series’’ methods (96) just described.

In contrast to computational mechanics, however, the key notion of
‘‘optimal prediction’’ was left undefined, as were the nature and construc-
tion of the states of the optimal predictor. In fact, the predictors used
required knowing the process’s underlying equations of motion. Moreover,
the statistical complexity Cm(s) differs from the measure complexities in
that it is based on the well defined causal states, whose optimal predictive
powers are in turn precisely defined. Thus, computational mechanics is an
operational and constructive formalization of the insights expressed in
ref. 77.

8. Hierarchical Scaling Complexity

Introduced in ref. 129, ch. 9, this approach seeks, like computational
mechanics, to extend certain traditional ideas of statistical physics. In brief,
the method is to construct a hierarchy of n th-order Markov models and
examine the convergence of their predictions with the real distribution of
observables as nQ.. The discrepancy between prediction and reality is,
moreover, defined information theoretically, in terms of the relative
entropy or Kullback–Leibler distance. (63, 73) (We have not used this quan-
tity.) The approach implements Weiss’s discovery that for finite-state
sources there is a structural distinction between block-Markovian sources
(subshifts of finite type) and sofic systems. Weiss showed that, despite their
finite memory, sofic systems are the limit of an infinite series of increa-
singly larger block-Markovian sources. (130)

The hierarchical-scaling-complexity approach has several advantages,
particularly its ability to handle issues of scaling in a natural way (see
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ref. 129, sec. 9.5). Nonetheless, it does not attain all the goals set in
Section IIF. Its Markovian predictors are so many black boxes, saying
little or nothing about the hidden states of the process, their causal con-
nections, or the intrinsic computation carried on by the process. All of
these properties, as we have shown, are manifest from the E-machine. We
suggest that a productive line of future work would be to investigate the
relationship between hierarchical scaling complexity and computational
mechanics, and to see whether they can be synthesized. Along these lines,
hierarchical scaling complexity reminds us somewhat of hierarchical
E-machine reconstruction described in ref. 5.

9. Continuous Dynamical Computing

Using dynamical systems as computers has become increasingly
attractive over the last ten years or so among physicists, computer scien-
tists, and others exploring the physical basis of computation. (131–134) These
proposals have ranged from highly abstract ideas about how to embed
Turing machines in discrete-time nonlinear continuous maps (7, 135) to, more
recently, schemes for specialized numerical computation that could in
principle be implemented in current hardware. (136) All of them, however,
have been synthetic, in the sense that they concern designing dynamical
systems that implement a given desired computation or family of compu-
tations. In contrast, one of the central questions of computational mecha-
nics is exactly the converse: given a dynamical system, how can one detect
what it is intrinsically computing?

We believe that having a mathematical basis and a set of tools for
answering this question are important to the synthetic, engineering
approach to dynamical computing. Using these tools we may be able to
discover, for example, novel forms of computation embedded in natural
processes that operate at higher speeds, with less energy, and with fewer
physical degrees of freedom than currently possible.
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